

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING

(Deemed to be University)

Syllabus for M.Sc. (Data Science and Computing)

(Effective from the batch 2018-19 onwards)

Prasanthi Nilayam - 515 134 Anantapur District, Andhra Pradesh, Ph.: 08555 287239; Fax: 286919 Website: <u>www.sssihl.edu.in</u> ; Email: <u>registrar@sssihl.edu.in</u>

Applicable from the year 2018-19 and onwards

(Effective from the batch 2018-19 onwards)

M.Sc. (Data Science and Computing) INTRODUCTION

Data Science has grown to be a domain of scientific study due to the deluge of data generated and acquired through various means. Data driven scientific discovery has contributed a lot to the scientific investigation. Important contributions of data acquisition, visualization and analytics with tools from Machine Learning is seen in domains like Business Intelligence, Financial services, Climate Modeling, Weather forecasting, Medical, Chemo, Bio, Onco informatics etc., and the list goes on.

It is felt that there is a need to produce manpower trained in this stream of scientific study and therefore a course is proposed.

For a Data Science graduate to be of use to the society and specific Industry or organization, he/she should be trained and equipped to develop solutions and applications using computing platform(s) of choice. Therefore, it is felt that a program for training young individuals in the area of Data Science should take care of their readiness to meet this requirement.

This programme is designed specifically for graduates in Computer Science and Computer Applications. Having Degrees like B.Sc.(Computer Science), BCA and B.Tech./B.E. in Computer Science.

In order to equip the students to continue with higher studies in academic disciplines for Ph.D., the candidates undergoing the course should also be comfortable to take the National Level qualifying examinations like UGC NET, GATE etc.

The course structure and syllabus provides good foundations and working knowledge in Statistics, Computer Science, Machine Learning, Data Visualization, Big data Analytics, Distributed Systems and Programming languages R, Python and platforms like Hadoop, SPARK etc.

All the subjects are to be awarded for 4 credits.

For some of the subjects the credits are split between Theory and Practical based on the necessity. For 1 credit of practical 2 periods are allocated.

A few subjects are purely practical as they are intended to improve programming skill of the students in a specific language or platform. Eight periods are allotted for a four credits practical course.

In order to facilitate development of skill in problem solving and to provide exposure to applications of the concepts learnt in a given Theory subject a facility for Tutorial/Practical is also provided within the curriculum. One or two periods per week is provided for Tutorial/Practical for every subject based on the requirement.

In order to cater to individual needs and preferences, electives courses are provided in the areas of Cloud Computing, Artificial Intelligence, Information Retrieval, Deep Learning, Computer Graphics, Image Processing, Computer Vision, Robotics etc. All electives are of 4 credits. Based on necessity the credits may be split between Theory and Practical.

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

SCHEME OF INSTRUCTION AND EVALUATION

M.Sc. (Data Science and Computing)

(Effective 2018-19 batch onwards)

Paper Code	Title of the Paper	Credits	Hours	Modes of Evaluation	Types of Papers	Maximum Marks
Semester I						
MDSC-101	Computational Linear Algebra	4	5	IE2	Т	100
MDSC -102	Inferential Statistics	4	5	IE2	Т	100
MDSC -103	Multivariate Analysis	4	5	IE2	Т	100
MDSC -104	Computer Organization and Architecture	4	5	IE2	Т	100
MDSC -105	Design and Analysis of Algorithms	4	5	IE2	Т	100
MDSC-106	Software lab in Python	4	8	Ι	Р	100
PAWR-100	Awareness Course – I: Education for Life	1	2	Ι	Т	50
		25 credits	35 hours			650 Marks

Semester II						
MDSC-201	Stochastic Processes	4	5	IE2	Т	100
MDSC-202	Regression Methods	4	5	IE2	Т	100
MDSC-203	Optimization Techniques	4	5	IE2	Т	100
MDSC-204	Distributed Systems	4	5	IE2	Т	100
MDSC-205	Software Engineering	4	5	IE2	Т	100
MDSC-206	Software lab in R	4	8	Ι	Р	100
PAWR-200	Awareness Course – II: God, Society and Man	1	2	Ι	Т	50
		25 credits	35			650 marks
			hours			

Paper Code	Title of the Paper	Credits	Hours	Modes of Evaluation	Types of Papers	Maximum Marks
Semester III						
MDSC -301	Machine Learning	3	3	IE2	Т	100
MDSC -301 (P)	Practicals: Machine Learning	1	2	Ι	Р	50
MDSC-302	Big Data Analytics	3	3	IE2	Т	100
MDSC-302(P)	Practicals: Big Data Analytics	1	2	Ι	Р	50
MDSC-303	Data Visualization	2	2	IE2	Т	50
MDSC-303(P)	Practicals: Data Visualization	2	4	Ι	Р	50
MDSC-304	Hadoop Programming	2	2	IE2	Т	50
MDSC-304(P)	Practicals: Hadoop Programming	2	4	Ι	Р	50
MDSC-305	Seminar	1	1	Ι		50
MDSC-404	Project Interim Review*			Ι	PW	50*
PAWR-300	Awareness Course –III: Guidelines for Morality	1	2	Ι	Т	50
		18 credits	25 hours			600 marks

Semester IV						
MDSC -401	Elective - I	4	5**	IE2/I	T/P	100**
MDSC-402	Elective - II	4	5**	IE2/I	T/P	100**
MDSC-403	Elective - III	4	5**	IE2/I	T/P	100**
MDSC-404	Project*	10	18	E2	PW	200*
MDSC-405	Comprehensive Viva voce	1		E1	V	50
PAWR-400	Awareness Course –IV: Wisdom for Life	1	2	Ι	Т	50
		24 credits	35 ** hours			600 ** marks
· · · · · · · · · · · · · · · · · · ·					· · · ·	

GRAND TOTAL	92	130**	2500**
	credits	hours	marks

Notes:

- 1. (*) Project work MDSC-404 will commence in 3rd semester and continue to 4th semester with the allocation of 50 Marks in third semester and 150 marks in the fourth semester towards the project work.
- 2. (*) For students undertaking project (MDSC-404), the evaluation will be based on three components, viz.
 - a. A preliminary review of an interim report in respect of the project work at the end of 3rd semester will be conducted for 50 marks and the marks allocated will be carried forward to 4th semester MDSC-404 for overall grading.

- b. A project Viva voce by a committee constituted by the Head of the Department as per regulations will be conducted for 50 marks in the 4th semester.
- c. An E2 type evaluation of the project report at the end of 4^{th} semester will be for 100 marks.
- 3. (*)Total marks for the project will be 200 marks against total credits of 10 accounted in $4^{\rm th}$ semester.
- 4. A number of electives have been identified and listed. These courses are identified with a special code. All these subjects are also allocated 4 credits each.
- 5. (**) Elective courses may have the credits split between Theory and Practical based on the chosen treatment of the subject and its requirement. Accordingly, the number of periods allocated for the subject (Th + Prac) will vary. That will influence the total number of hours allocated for the subject and the total marks for the semester too.
- 6. The choice of electives being offered in each semester is at the discretion of the Head of the Department.

Indicat or	Legend		Indicat or	Legend
IE1	CIE and ESE ; ESE single evaluation		Т	Theory
IE2	CIE and ESE ; ESE double evaluation	Ιſ	Р	Practical
	Continuous Internal Evaluation (CIE) only		V	Viva voce
Ι	Note: 'I' does not connote 'Internal		PW	Project Work
	Examiner'		D	Dissertation
Е	End Semester Examination (ESE) only Note: 'E' does not connote 'External Examiner'			
E1	ESE single evaluation			
E2	ESE double evaluation			
Continuous	s Internal Evaluation (CIE) & End Semester Examination			

PS: Please refer to guidelines for 'Modes of Evaluation for various types of papers', and 'Viva voce nomenclature & scope and constitution of the Viva voce Boards'.

Semester I

[MDSC-101]- Computational Linear Algebra 4 Credits

	Course Objective: The course focuses on iterative techniques for solvin linear systems of equations which typically stem from the discretizat differential equations. In addition, computation of eigenvalues,	g large sparse tion of partial least square
	problems and error analysis will be discussed.	_
	Course Outcome: Develop the skill set to	
	 explain and fluently apply fundamental linear algebraic concepts s 	such as matrix
	norms, Eigen- and singular values and vectors;	
	• estimate stability of the solutions to linear algebraic equations ar	nd eigenvalue
	problems; recognize matrices of important special classes, suc	h as normal,
	unitary, Hermitian, positive definite and select efficient c	computational
	algorithms based on this classification;	
Unit	Торіс	Hrs.
1	Matrices and Gaussian Elimination, Matrix Notation, Matrix	8
	Multiplication Triangular Factors, Row Exchanges, Inverses and	
	Transposes, Special Matrices and Applications	
2	Vector Spaces, Subspaces, Solving $Ax = 0$, and $Ax = b$, Linear	10
	Independence, Basis and Dimension, Four Fundamental Subspaces,	_
	Graphs and Networks, Linear Transformations	
3	Orthogonality - Orthogonal Vectors and Subspaces, Cosines and	10
	Projections onto Lines, Least Squares, Orthogonal Bases and Gram -	
	Schmidt, Fast Fourier Transform	
4	Determinants - Properties of Determinant, Formulas for the	8
	determinant, Application of Determinants.	
5	Eigenvalue Problems: Overview of eigenvalue problems –	
	Diagonalization of a Matrix, Difference Equations and Powers,	10
	Transformations, Positivo Definito Matrices, Minima Maxima	10
	Saddle Points Tests for Positive Definiteness SVD Minimum	
	Principles, Finite Element Method	
6	Computation with Matrices - Matrix Norms, Condition Numbers	
	Computation of Eigenvalue, Iterative Method for Ax = b	6

Key Text

Linear Algebra and Its Applications - by Gilbert Strang, 4th Edition, Thomson Brooks/Cole.

REFERENCES

1. Numerical Linear Algebra, Allaire, Grégoire, Kaber, Sidi Mahmoud, Springer (2008)

2. Applied Numerical Linear Algebra, by James W. Demmel, SIAM (1997)

3. Numerical Linear Algebra, by Lloyd Trefethen and David Bau III, SIAM, 1997.

[Lectures 1-29, 32-35 covered in chapter 1-6 of the Text Book]

	Course Objective:					
	• To make s	tudents understand and make inferences based on relations	s found			
	in the sam	pple, to relations in the population.				
	• For each	individual statistical test students should be able to unde	erstand			
	how it wo	orks, for what data and design it is appropriate and how	results			
	should be interpreted.					
	Course Outcom	le:				
	Develop the ski	ll set to				
	Acquire	an understanding of the concepts of sampling distri	bution,			
	statistical	reliability and hypothesis testing, as well as the princip	les and			
	procedure	es of the various tests of significance.				
	 Write pyth 	hon program to carry out data analyses;				
	Interpret	the output of such analysis.				
Unit	Topic	Details	Hrs.			
1	Central Limit	Expectations of Continuous Random Variables, General	10			
	Theorem	Definition of Expectation, Moments of Continuous				
		Random Variables, Conditional Expectation, Central				
		Limit Theorem - Normal Approximation, Applications				
		to Sampling				
2	Basic Principles	Types of Problems, Risk Function, Mean Risk, Choice of	12			
	& Estimation	Loss functions, Unbiased Estimates, Efficiency,				
		Asymptotic Efficiency, Maximum Likelihood				
		Estimation, Vector Parameters, Confidence Intervals				
3	Testing	Neyman-Pearson Lemma, Composite Hypotheses,	10			
	Hypotheses	Sequential Tests, Likelihood ratio tests, Goodness of fit				
		tests				
4	Linear Models -	Linear Regression, Nonlinear Regression, Multiple	10			
	Estimation	Linear Regression, Matrix Methods, Properties of Least				
		Squares Estimators, Analysis of Variance mode				
5	Linear Models -	General Linear Hypothesis, Confidence Intervals for	10			
	Testing	regression coefficients, Simple Linear Regression,				
		Multiple Linear Regression, Analysis of Variance				
	*Ba	yesian Methods are excluded throughout				
Key Tex	:t(s):					
Introdu	Introduction to Probability Theory by Paul G. Hoel, Sidney C. Port, Charles J. Stone					
Chapter	:: 7: Houghton Mi	fflin Company, BOSTON				
Introdu	ction to Statistical	Theory by Paul G. Hoel, Sidney C. Port, Charles J. Stone				
Chapters: 1, 2.1 - 2.7, 3.1 - 3.5, 4.1 - 4.7, 5						

[]	IDSC-103] Multivariate Analysis 4 Cred	its			
	Course Objective: To learn multivariate statistical methods that uncover surprising bulinkages between variables and explain and predict their measured value	ut valid es.			
	 Course Outcome: Develop the skill set to select appropriate methods of multivariate data analysis, multivariate data; Write python program to carry out multivariate data analyses; Interpret the output of such analysis. 	, given			
Unit	Chapters	Hrs			
0	Bivariate: Binomial, Poisson, exponential and normal distributions, conditional and marginal distributions	6			
1	Matrix algebra, random vectors and random sampling	6			
2	Multivariate normal distribution, (singular and non-singular) marginal and conditional distributions; linear transformations, characteristics function; maximum likelihood estimators of the parameters and their sampling distributions.	10			
3	Tests of hypothesis about the mean vector of normal distribution, Hotelling's T ² - statistics, its distribution and applications; Wishart distribution and its properties	10			
4	Introduction to principle components, Graphing the Principal Components; factor model and estimations; canonical correlation and canonical variables;	10			
5	Cluster analysis; classification of populations.	10			
Key tex Wicherr Chapter	Key text: Applied Multivariate Statistical Analysis (AMSA) by Richard Johnson and Dean Wichern, (6 th edition). Pearson Publications Chapters: 2.1-2.6, 3.3-3.6, 4.1-4.4, 5.1-5.5, 8.1-8.4, 10.1-10.4, 10.6, 12.3, 12.4, 12.7				
Referer 1. Ando 2. Kshi	nce books: erson, T. W., An Introduction to Multivariate Statistical Analysis, Wiley, 2 rsagar, A. M., Multivariate Analysis, Marcel Dekker, 1972.	2003.			

[MDSC-104] – Computer Organization and Architecture 4 Credits

	Course Objective:				
	To study and	understand the basic of computer organization and archit	ecture		
	(CPU, memory, I/O).				
	Course Outcome:				
	Develop the s	kill to			
	• Evaluat	e the merits and pitfalls in computer performance measuremen	its		
	• Evaluat	e impact of ISA on cost/performance of computer design.			
	• Enhanc	e the performance and take advantage of Instruction Level Pa	arallelism		
	and usi	ng this with minimum hazards.			
	• Unders	tand memory hierarchy and its impact on computers performan	nce.		
	Experie	nce of executing programs in simulator.			
Unit	Unit Title	Unit Contents	No. of		
No.			Periods		
1	Introduction	Performance, the Power Wall, the Switch from Uniprocessors	6		
		to Multiprocessors,			
		Historical Perspective.			
2	Instruction	Operations of the Computer Hardware,	12		
	Set Design	Operands of the Computer Hardware, Signed and Unsigned			
		Numbers,			
		Representing Instructions in the Computer,			
		Logical Operations, Instructions for Making Decisions,			
		Supporting Procedures in Computer Hardware, MIPS			
		Addressing for 32-Bit Immediates and Addresses,			
		Parallelism and Instructions.			
3	Arithmetic	Addition and Subtraction, Multiplication, Division, Floating	8		
	for	Point representation, Computer Arithmetic.			
	Computers				
4	The Processor	Logic Design Conventions, Building a Datapath, Pipelining,	12		
		Pipelined Datapath and Control, Data Hazards: Forwarding			
		vs. Stalling, Control Hazards, Exceptions			
5	Memory	The Basics of Cache, Measuring and Improving Cache	14		
	Hierarchy	Performance, Virtual Memory, A Common Framework for			
		Memory Hierarchies, Parallelism and Memory Hierarchies:			
I/ T	()	Cache Coherence			
Key Te	ext(s):		D: 1 A		
Compu	iter Organization	h and Design: The Hardware/Software Interface by Patterson,	David A.		
and He	nnessy, John L,	WIFS - Fourth Edition, Elsewhere Publications			
Cnapte	rs: 1, 2, 3, 4, 5				

REFERENCE BOOKS:

1. Randal E. Bryant and David R. O'Hallaron, Computer Systems: A Programmer's Perspective, Prentice Hall, 2011 (Second Edition).

2. Computer Architecture And Organization – John P. Hayes, McGraw Hill Edition.

Course objective:

- to develop problem solving skills by analyzing various problems and learning the techniques for implementation.
- Analyze the asymptotic performance of algorithms.
- Write rigorous correctness proofs for algorithms. Demonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design paradigms and methods of analysis. Synthesize efficient algorithms in common engineering design situations.

Course outcome:

Develop the skill to

- Analyze the problem.
- Implement various problem solving methods.
- Write algorithms for implementing solutions.
- Discriminate between different problem solving approaches.
- For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms .

Unit	Unit Title	Unit Contents	No. of Periods
1	Introduction	Algorithm, Algorithm Specification, and Performance Analysis. Randomized Algorithms. Basic Data Structure: Stacks and Queues, Trees, Dictionaries, Priority Queues, Sets and disjoint Set Union, Graphs.	8
2	Divide and Conquer	Binary search, Finding MIN and MAX, Merge sort, Quick sort, Selection, Strassen's Matrix Multiplication, convex Hull.	6
3	The Greedy method	Knapsack problem, Tree vertex splitting, Job Sequencing with deadlines, minimum cost spanning Trees, optimal merge patterns, single source shortest path.	8
4	Dynamic Programming	General Method, Multistage Graph, All pairs shortest path, single source shortest path, Optimal Binary Search Trees, 0/1 Knapsack, reliability design, the traveling salesperson problem.	8
5	Basic traversal and Search Techniques	Techniques for Binary Trees, graphs, spanning tress, DFS	6

6	Backtracking	General Method, 8-queens problem, sum of subsets, Graph coloring, Hamiltonian cycles, Knapsack problems. Branch and Bound: the general method, 0/1 Knapsack problem, TSP	8
7	NP-Hard and NP-Complete Problems	Basic concepts, Cooks theorem, NP-Hard graph problems, NP- Hard Scheduling problem, NP-Hard code generation problems, some simplified NP-Hard problems	8

Key Text:

E Horowitz, S Sahani S Rajasekaran, "Fundamentals of Computer Algorithms", 2E, Universities Press. Chapters: 1,2,3,4,5,6,7 and 11.

Reference Texts:

1. AHO, Hopcraft, Ullman, "The Design Analysis of Computer Algorithms".

2. Thomas H. Cormen, Charles E. Leiserson, R.L. Rivest, Algorithms, Prentice Hall of India Publications, New-Delhi.

3. Sara Baase and Allen Van Gelder, Computer Algorithms: Introduction to Design and Analysis, Pearson education (Singapore) Pte. Ltd, New Delhi.

4. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education (Singapore) Pte. Ltd New Delhi.

[MDSC-106]- Software Lab in Python

4 Credits

Semester –II

	[MDSC-201] -Stochastic Processes 4 Credits		
	Course Objective:		
	Stochastic models are among the most widely used tools in operations		
	research and management science. Stochastic processes and applications		
	can be used to analyse and solve a diverse range of problems arising in		
	production and inventory control, resource planning, service systems,		
	computer networks and many others.		
	Course Outcome:		
	Develop the skill set to		
	• elucidate the power of stochastic processes and the	eir range of	
	applications;		
	• demonstrate essential stochastic modelling tools includ	ing Markov	
	chains and Gaussian processes;		
	• formulate and solve problems which involve setting u	p stochastic	
	models		
Unit	Торіс	H.rs	
1	Markov Chains : classification of states, transition functions,	14	
	existence and uniqueness of stationary distribution, expected		
	time between successive visits to a state - positive recurrent		
	states,		
2	Convergence to the stationary distribution, Birth and death	12	
	chains Branching and qualing chains		
	chains, branching and queung chains.		
3	Markov Processes: Continuous time discrete state Markov	12	
3	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes	12	
3	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the	12 14	
3	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the mean, covariance and sample functions.	12 14	
3 4 Key text:	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the mean, covariance and sample functions. Introduction to Stochastic Processes by Paul G. Hoel, Sidney C. Por	12 14 t and	
3 4 Key text: Charles J	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the mean, covariance and sample functions. <i>Introduction to Stochastic Processes</i> by Paul G. Hoel, Sidney C. Por . Stone, Houghton Mifflin Company, BOSTON, 1972.	12 14 t and	
3 4 Key text: Charles J	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the mean, covariance and sample functions. Introduction to Stochastic Processes by Paul G. Hoel, Sidney C. Por . Stone, Houghton Mifflin Company, BOSTON, 1972. Chapters: 1-4.	12 14 t and	
3 4 Key text: Charles J Reference	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the mean, covariance and sample functions. Introduction to Stochastic Processes by Paul G. Hoel, Sidney C. Por Stone, Houghton Mifflin Company, BOSTON, 1972. Chapters: 1-4.	12 14 t and	
3 4 Key text: Charles J Reference 1. Re	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the mean, covariance and sample functions. Introduction to Stochastic Processes by Paul G. Hoel, Sidney C. Por . Stone, Houghton Mifflin Company, BOSTON, 1972. Chapters: 1-4. es: poss, S., Stochastic Processes, second edition, John Wiley, 1996.	12 14 t and	
3 4 Key text: Charles J Reference 1. Ro 2. Ge	Markov Processes: Continuous time discrete state Markov processes, Poisson processes, birth and death processes Gaussian processes, The Wiener process; continuity of the mean, covariance and sample functions. Introduction to Stochastic Processes by Paul G. Hoel, Sidney C. Por . Stone, Houghton Mifflin Company, BOSTON, 1972. Chapters: 1-4. es: oss, S., Stochastic Processes, second edition, John Wiley, 1996. oswami, A. and Rao, B. V., A Course in Applied Stochastic, Proce	12 14 t and sses,	

	[MDSC-202]	- Regression Methods 4 Credits		
	Course Objectives: Regression methods is one of the most powerful methods in statistics for determining the relationships between variables and using these relationships to forecast future observations. Regression models are used to predict and forecast future outcomes. Its popularity in finance is very high; it is also very popular in other disciplines like life and biological sciences, management and engineering.			
	 Course Outcome: Develop the skill set develop a develop a d	t to eeper understanding of the linear regression mod d apply corrections to some problems with the g found in real data;	el and its eneralized	
Unit	Торіс	Details	Hours	
1	Simple Linear Regression	Model, Least Squares Estimation, Hypothesis Testing, Interval Estimation, Prediction of new observations, Coefficient of Determination, Regression through Origin, Estimation by Maximum Likelihood, Application examples	10	
2	Multiple Linear Regression	Models, Estimation of model parameters, Hypothesis Testing, Confidence Intervals, Prediction of new observations, Hidden Extrapolation, Standardized Regression Coefficients, MultiCollinearity, Application examples	10	
3	Model Adequacy Checking	Residual Analysis, Press Statistic, Detection and treatment of Outliers, Lack of fit	10	
4	Model Adequacy Correction	Variance stabilizing transformations, Transformations to Linearize, Analytical methods for selecting a transformation, Generalized and Weighted Least squares	10	
5	Generalized Linear Models	Logistic Regression, Poisson Regression, Generalized Linear Model	12	

Key Text: Introduction to Linear Regression Analysis by Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining, 5th Edition, Wiley. Chapters: 1 - 5, 13.

References: Applied Regression Analysis - Norman Draper and Harry Smith, 3rd Edition

	[MDSC-2	03] – Optimization Techniques 4 Credi	ts	
	Course Objective To study of model applications. Study	formulation and discussion of documented real-wor y of mathematical programming algorithms. Apply the	ld he	
	concrete Engineeri	ing problems.		
	Course Outcome:			
	Develop the skill s	et to		
	• become a m	athematical translation of the verbal formulation of a	in	
	optimizatio	n problem;		
	• discovery, s	study and solve optimization problems;		
	 Investigate, 	study, develop, organize and promote innovative so	lutions	
	for various	applications.	r	
Unit	Title	Contents	Hrs	
1	Introduction	Introduction to Linear Programming Problem (LPP), Graphical method, simplex method, Two Phase method, degeneracy, alternative optima, Graphical sensitivity analysis	10	
2	Linear Programming	LP-Duality And Sensitivity Analysis: Definition of Dual, Primal-Dual Relationships, Dual Simplex Sensitivity or Post Optimal Analysis.	8	
3	Advanced Linear Programming	Revised Simplex Method, Bounded-Variable Algorithm, Duality, Parametric programming	10	
4	Integer Programming	Formulation and Applications-Cutting Plane Algorithm-Branch and Bound Method.	8	
5	Deterministic Inventory models	EOQ models, EOQ with price breaks, Multi-Item EOQ with storage limitation.	8	
6	Queuing Systems	Pure birth and Pure death models, generalized Poisson queuing model, single server models.	8	
Key Text(s): Operations Research- An Introduction, by Hamdy A.Taha, 9th Edition, Pearson Education - 2012.				
Chapte	Chapters: 2 to 4, 7.1-7.6, 9, 13.1-13.3, 18.1- 18.6.2			
REFERENCE BOOKS:				
Optimi	Optimization Techniques , by L.R.Foulds, Springer ,Utm , 1981			

[MDSC-204] – Distributed Systems

	 Course Objective: To provide students with contemporary knowledge in parallel and distributed systems. To equip students with skills to analyze and design parallel and distributed applications. 3. To provide master skills to measure the performance of parallel and distributed algorithms 		
	Course Studen •	 Irse Outcome: dents will be able to Apply the principles and concept in analyzing and designing the parallel and distributed system Reason about ways to parallelize problems. Gain an appreciation on the challenges and opportunities faced by parallel and distributed systems. Understand the middleware technologies that support distributed applications such as RPC, RMI and object based middleware. Improve the performance and reliability of distributed and parallel programs. 	
Course Code: 204	Unit	Description	No. of Periods
	Ι	Characterization of Distributed Systems: Introduction, Examples of Distributed Systems, Trends In Distributed Systems, Focus On Resource Sharing, Challenges, Case Study: The World Wide Web. System Models: Physical Models, Architectural Models, Fundamental Models	10
	П	Networking and Internetworking: Types Of Network, Network Principles, Internet Protocols, Case Studies: Ethernet, Wifi And Bluetooth. Interprocess Communication: The API For The Internet Protocols, External Data Representation And Marshalling, Multicast Communication, Network Virtualization: Overlay Networks, Case Study: MPI	10

	III	Remote Invocation: Request-Reply Protocols, Remote Procedure Call, Remote Method Invocation, Case Study: Java RMI Indirect Communication: Group communication, Publish-subscribe systems, Message queues, Shared memory approaches Web Services: Web services, Service descriptions and IDL for web services, A directory service for use with web services, XML security, Coordination of web services, applications of web services.	10
	IV	Coordination and Agreement: Distributed mutual exclusion, Elections Coordination and agreement in group communication, Consensus and related problems Name Services: Name services and the Domain Name System, Directory services, Case study: The Global Name Service, Case study: The X.500 Directory Service. Time and Global States: Clocks, events and process states, Synchronizing physical clocks, Logical time and logical clocks, Global states, Distributed debugging	11
	V	Distributed Transactions: Flat and nested distributed transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks. Replication: System model and the role of group communication, Fault-tolerant services, Case studies of highly available services: The gossip architecture, Bayou and Coda, Transactions with replicated data Mobile And Ubiquitous Computing: Association, Interoperation, Sensing and context awareness, Security and privacy, Adaptation, Case study: Cooltown	11
Text Book: 1. George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair, Distributed Systems - Concepts and Design (Unit I-Unit VI) Publisher: Addison Wesley - 2012			
References: 2. A. Taunenbaum, "Distributed Systems: Principles and Paradigms" 3. G. Coulouris, J. Dollimore, and T. Kindberg, "Distributed Systems: Concepts and Design", Pearson Education			

Г

	Course Objective: The main objective of the course is to introduce to the students about the product that is to be engineered and the processes that provides a framework for the engineering methodologies and practices. 1. To provide the knowledge of software engineering discipline. 2. To apply analysis, design and testing principles to software project development.3. To demonstrate and evaluate real time projects with respect to software engineering principles.			
	 Course Outcome: Students will be able to Understand and demonstrate basic knowledge in software engineering. Identify requirements, analyze and prepare models. Plan, schedule and track the progress of the projects Design & develop the software projects. Identify risks, manage the change to assure quality in software projects. Apply testing principles on software project and understand the maintenance concepts. 			
Unit	Unit Title	Description	No. of Periods	
Ι	Software Engineering Basics	Software life cycle processes, Requirement Engineering , Project Management, Software metrics, testing and maintenance	8	
II	Software Architecture	Definitions and foundations in Software architecture, Separation of concerns. Design patterns, Object-Oriented design practices, Refactoring	8	
Ш	UML Modelling	Introduction, Use case modelling, Scenarios, Activity diagrams, Class analysis and object diagrams, Interaction diagrams, State diagrams, Component and deployment, Use Case modelling, Role of Use Cases, Example: use case modelling, Class Diagram, Relationships in class, diagrams, Generalisation in class diagrams, Class Diagram Analysis – Attributes, Class Diagram: Operations, Sequence Diagram, State	12	

		Diagram, State Transition Diagram: Example, Component Diagram ,Deployment Diagram	
IV	Agile Software Development	Values, principles, stakeholders, Agile Principles: Twelve Practices of Agile process, Communication, Planning, Agile Product Management: Estimation, Quality, Risk, Metrics and Measurements, Agile Requirements: User Stories, Backlog Management, Agile Architecture: Feature-Driven Development, Agile Risk Management: Risk and Quality Assurance, Agile Testing: Test-Driven Development, User Acceptance Test	12
V	Case Studies	Agile concepts: Scrum, Extreme Programming , Lean , and Kanban , Introduction to Devops for agile software development (Continuous delivery)	12

Key Text :

1.Roger.S.Pressman, "Software Engineering - A Practitioner's approach", 7th Edition, MGH higher Education

Reference Text:

1.An Integrated Approach To Software Engineering by PankajJalote, 3rd Edition, Narosa Publishing House, New Delhi, 2005

2. Software Architecture in Practice, Len Bass, Paul Clements, Rick Kazman.

3.Documenting Software Architectures: Views and Beyond Paul Clements, Felix Bachmann, Len Bass, David Garlen, James Ivers, Reed Little, Robert Nord, Judith Stafford

4.B3 - Gamma, Helm, Johnson, Vlissides - Design Patterns: Elements of Reusable Object-Oriented Software

Semester –III

[MDSC-301] -	Machine Learning	[Theory: 3 credits; LAB: 1 credit]
--------------	------------------	------------------------------------

	 Course Objective: 1. To introduce students to the basic concepts and techniques of Machine Learning. 2. To become familiar with regression methods, classification methods, clustering methods. 3. To become familiar with Dimensionality reduction Techniques 		
	 Course Outcome: Students will be able to Gain knowledge about basic concepts of Machine Learning Identify machine learning techniques suitable for a given problem Solve the problems using various machine learning techniques Apply Dimensionality reduction techniques. Design application using machine learning techniques (As a part of Lab). 		
Unit	Description	No. of Periods	
1	Machine Learning: Introduction, Types of machine learning, supervised learning-Basics, Over fitting the training data.	3	
2	Nearest Neighbor Methods, Validation: Nearest neighbor prediction, K-nearest neighbor methods, Weighted neighbor methods, the curse of dimensionality, Computational considerations, Connection to density estimation. Bayesian Classifiers, Naive Bayes classifier, Classifiers and Error Rates	7	
3	Linear regression: Optimization, Increasing the number of features, Over fitting and method Selection, linear classification: Characterizing a linear classifier, Training a linear classifier, Logistic regression	8	
4	Support vector machines (SVMs), Linear SVM, Lagrangian optimization and duality, The soft margin SVM, The kernel Trick, VC dimension	6	
5	Decision Trees: Predictor form, Training Decision trees, Decision tree classifiers, Learning Decision trees, Decision stumps.	6	
6	Ensemble Methods: Stacking, Bagging and Boosting	6	

7		4	
	Clustering: K-means, Agglomerative, Gaussian Mixtures and EM		
Vor To		L	
Key re	xt :		
1. A Co Chapter 2. Roge	urse in Machine Learning by Hal Daumé III rs: 1, 3, 7, 9, 10, 11, 13, 15. rs and Girolami, A First Course in Machine Learning		
Referen	ice Books:		
 Hasti Barbo Mitch 	e, Tibshirani, and Friedman, The Elements of Statistical Learning er, Bayesian Reasoning and Machine Learning nell, Machine Learning		
Chrisop Referen	wher Bishap, Pattern Recognition and Machine Learning, Springer,2006 .ces: <u>https://see.stanford.edu/Course/CS229</u>		

[MDSC-301 (P)] - Machine Learning Practical: 1 credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

[MDSC-302] – Big Data Analytics [Theory: 3 credits; LAB: 1 credit]

	Course Objective:				
	 To provide an overview of an exciting growing field of big data analytics. To introduce the tools required to manage and analyze big data like Hadoop, NoSql MapReduce. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability. To enable students to have skills that will help them to solve complex real-world problems in for decision support. 				
	 Course Outcome: Students will be able to Understand the key issues in big data management and its associated applications in intelligent business and scientific computing. Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map Reduce and NO SQL in big data analytics. Interpret business models and scientific computing paradigms, and apply software tools for big data analytics. Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc. 				
S. No	UNIT	Topics	No. of Periods		
1	Introduction to Big Data	Big Data - Why and Where?, Characteristics of Big Data and Dimensions of Scalability, Getting value out of Big Data, Foundations for Big Data Systems and Programming	4		
2	Similarity Algorithms	Near-Neighbor search, Shingling, Similarity preserving summary, Locality sensitive functions, Distance measures, Locality sensitive hashing and its applications to different distance measures, Applications of Locality sensitive hashing	10		

3	Streaming Data	Stream Data model, Sampling data in a stream, Filtering streams, Counting distinct elements in a stream, Application of stream algorithms in counting.	12
4	Link Analysis	Page Rank, Computation of Page Rank, Topic sensitive page rank, Link spam.	6
5	Frequent Item sets	Market-Basket model, A-priori algorithm, Larger datasets in main memory, Limited pass algorithms, Counting frequent sets in a stream	8
	Text Book	Mining Massive Datasets by Anand Rajaraman Stanford University Press – 2014 – Chapters 1 - 5	

[MDSC302 (P)] – Big Data Analytics Practical - 1 Credit - This will be evaluated internally.

List of Assignments:

- 1. MapReduce Implementation
- 2. Bloom Filter Implementation
- 3. Jaccard Similarity implementation:
- 4. Page Rank algorithm implementation
- 5. Min Hash Implementation
- 6. Clustering Algorithm K means

	Course Objective:		1		
	• Design effect	Design effective data visualizations in order to provide new insignts into a			
	research ques	research question or communicate information to the viewer.			
	• Find and sel	Find and select appropriate data that can be used in order to create a			
	visualization	that answers a particular research question.			
	Understand h	ow Cultures of Practice influence the way data may be	collected,		
	described, or	formatted in order to align their own data managemen	t practices		
	with those of	their discipline			
	Course Outcome:				
	Students will be able	to			
	Properly doc	ument and organize data and visualizations in order	to prepare		
	them for reus	e.			
	• Handle data	and data visualizations in a manner that demon	strates an		
	understandin	g of ethical considerations surrounding data (inclu	ding data		
	storage, citatio	on, and protection).	0		
Unit	Unit Title	Unit Contents	No. of		
No.			Periods		
	Effective	Purpose, Scope, Communication Style, Quantitative	6		
	Communication of	relationships, Differing roles of tables and graphs			
	Quantitative				
	Information				
	Visual Perception	Mechanics of Sight Applying visual attributes to	10		
	Visual Perception and Graphical	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of	10		
	Visual Perception and Graphical Communication	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs	10		
	Visual Perception and Graphical Communication General Design	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs Organizing, Highlighting, Integration, Table design,	10		
	Visual Perception and Graphical Communication General Design principles for	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs Organizing, Highlighting, Integration, Table design, General graph design, Component level graph	10 10		
	Visual Perception and Graphical Communication General Design principles for Communication	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs Organizing, Highlighting, Integration, Table design, General graph design, Component level graph design, Multi-Variable display	10		
Key Te	Visual Perception and Graphical Communication General Design principles for Communication ext - Show me the num	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs Organizing, Highlighting, Integration, Table design, General graph design, Component level graph design, Multi-Variable display bers: Designing tables and graphs to enlighten by Steph	10 10 nen Few,		
Key Te 2nd Ed	Visual Perception and Graphical Communication General Design principles for Communication ext - Show me the num ition	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs Organizing, Highlighting, Integration, Table design, General graph design, Component level graph design, Multi-Variable display bers: Designing tables and graphs to enlighten by Steph	10 10 nen Few,		
Key Te 2nd Ed Chapte	Visual Perception and Graphical Communication General Design principles for Communication ext - Show me the num lition ers - 1 to 11	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs Organizing, Highlighting, Integration, Table design, General graph design, Component level graph design, Multi-Variable display bers: Designing tables and graphs to enlighten by Steph	10 10 nen Few,		
Key Te 2nd Ed Chapte Refere	Visual Perception and Graphical Communication General Design principles for Communication ext - Show me the num lition ers - 1 to 11 nce Text - The Visual c	Mechanics of Sight, Applying visual attributes to design, Gestalts principle, Fundamental variations of tables, Fundamental variations of graphs Organizing, Highlighting, Integration, Table design, General graph design, Component level graph design, Multi-Variable display bers: Designing tables and graphs to enlighten by Steph lisplay of quantitative information by Edward R. Tufte,	10 10 nen Few, 2 nd		

[MDSC-303 (P)] – Data Visualization Practical 2 Credit

This will be evaluated internally.

Unit I - Fundamentals: Introduction to Matplotlib, importing libraries in python, Basic Scatter plot, Creating Axes, Line plot

Unit II - Customization: Title & Axis labels, Equations in text, Formatting Axis ticks, Customizing Tick Labels, Adding Legend, Annotations, Plot Styles

Unit III - Types of Visualizations: Histograms, Bar Graphs, Box and Whisker Plots, Pit charts, 2D histograms, Images, Colour maps, 3D Line and Scatter plots, Adding animation.

[MDSC 304 – Hadoop Programming] [Theory: 2 credit; LAB: 2 credits]

	 Course Objective: Learn the core techniques and concepts of Big Data and Hadoop ecosystem. Write codes using MapReduce framework and managing large data sets with HBase. Understanding the HDFS architecture 			
	 Course Outcome: Student will be able to Write code to understand big data concepts. Write Mapreduce algorithms Design Hadoop clusters Installation of Hadoop master slave architecture 			
Unit No.	Unit Title	Unit Contents	No. of Periods	
1	Hadoop	Traditional enterprise solutions; Google's solution; Hadoop Architecture; MapReduce	5	
2	Hadoop and BigData	What is BIG data; BIG data benefits; BIG data technologies; challenges of BIG data Management	5	
3	HDFS overview	Features of HDFS; HDFS Architecture;	6	
4	Hadoop MapReduce	The MapReduce algorithm; Applications; Hadoop streaming	5	
5	Multinode cluster	Installing and Configuring Hadoop; Master and Slave servers	5	
Key Tex Hadoop Online 1	t: with Python by materials from: <i>h</i>	Zachary Radtka and Donald Miner – O'Reilly publications –	2015 ;	

MDSC-304 (P) – Hadoop Programming Practical: 2 credits

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

List of Electives:

- 1. MDSC GRT: Graph Theory [4 credit]
- 2. MDSC MMS: Multimedia Systems [4 credit]
- 3. MDSC MIS: Management Information System [4 credit]
- 4. **MDSC MP (T)**: Microprocessor [3 credit] and **MDSC-MP (P)** Microprocessor Lab [1 credit]
- 5. MDSC IR: Information Retrieval [4 credit]
- 6. MDSC EC: Embedded Computing [4 credit]
- 7. MDSC SC: Soft Computing [4 credit]
- 8. **MDSC CD**: Compiler Design [4 credit]
- 9. MDSC FL: Formal Languages [4 credit]
- 10. MDSC NS: Network Security [4 credit]
- 11. MDSC CC: Cloud Computing [4 credit]
- 12. MDSC GT: Game Theory [4 credit]
- 13. MDSC PR: Pattern Recognition [4 credit]
- 14. MDSC CG (T): Cryptography [3 credit] and MDSC CG (P): Cryptography Lab [1 credit]
- 15. **MDSC PP (T)**: Parallel Processing [3 credit] and **MDSC PP (P)**: Parallel Processing Lab [1 credit]
- 16. MDSC –NLP: Natural Language Processing [3 credit] and MDSC NLP (P): Lab [1 credit]
- 17. MDSC IoT (T): Internet of Things [3 credit] and MDSC IoT (P): Lab [1credit]
- 18. **MDSC DL**: Deep Learning [4 credit]
- 19. MDSC- IM (T): Image Processing [3 credit] and MDSC- IM (P): Lab [1 credit]
- 20. MDSC CV (T): Computer Vision [3 credit] and MDSC CV (P): Lab [1 credit]
- 21. MDSC RO: Robotics [4 credit]
- 22. MDSC ARM : Advanced Regression Methods [4 credit]

	CODE: MDSC	C-GRT	Graph Theory	4 Credits	
	Course Objectives:				
	This course is aimed to cover a variety of different problems in Graph Theory. In				
	this course students will come across a number of theorems and proofs.				
	Theorems will be stated and proved formally using various techniques. Various				
	graphs algorithms	will also be	e taught along with its analysi	s.	
	Course Outcome:				
	Develop the skill se	et to			
	• Model and s	olve real-w	vorld problems using graphs a	and trees, both	
	quantitative	ly and qua	litatively.	·	
	• apply the ba	sic concept	ts of mathematical logic		
	describe and	d solve son	ne real time problems using co	oncepts of graph	
	theory		1 0	1 0 1	
Unit	Title		Contents		Hrs
Unit 1	Title Introduction	Graphs ar	Contents nd Graph model, Connected grap	ohs, Multi	Hrs 6
Unit 1	Title Introduction	Graphs ar graphs an	Contents nd Graph model, Connected grap d Digraphs	ohs, Multi	Hrs 6
Unit 1 2	Title Introduction Degree	Graphs ar graphs an Degree of	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree	ohs, Multi sequence	Hrs 6 6
Unit 1 2 3	TitleIntroductionDegreeIsomorphism of	Graphs an graphs an Degree of Definition	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a	ohs, Multi sequence as a relation	Hrs 6 6 6
Unit 1 2 3	TitleIntroductionDegreeIsomorphism ofgraphs	Graphs ar graphs an Degree of Definition	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a	ohs, Multi sequence as a relation	Hrs 6 6 6
Unit 1 2 3 4	TitleIntroductionDegreeIsomorphism of graphsTrees	Graphs an graphs an Degree of Definition Bridges, T	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a Prees, Minimal Spanning trees	ohs, Multi sequence as a relation	Hrs 6 6 6 6
Unit 1 2 3 4 5	TitleIntroductionDegreeIsomorphism of graphsTreesConnectivity	Graphs an graphs an Degree of Definition Bridges, T Cut-vertic	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a frees, Minimal Spanning trees es, Blocks, Connectivity	ohs, Multi sequence as a relation	Hrs 6 6 6 8
Unit 1 2 3 4 5 6	TitleIntroductionDegreeIsomorphism of graphsTreesConnectivityTraversability	Graphs an graphs an Degree of Definition Bridges, T Cut-vertic Eulerian g	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a frees, Minimal Spanning trees res, Blocks, Connectivity graph, Hamiltonian graph	ohs, Multi sequence as a relation	Hrs 6 6 6 6 8 6
Unit 1 2 3 4 5 6 7	TitleIntroductionDegreeIsomorphism of graphsTreesConnectivityTraversabilityPlanarity	Graphs an graphs an Degree of Definition Bridges, T Cut-vertic Eulerian g Planar gra	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a Prees, Minimal Spanning trees es, Blocks, Connectivity graph, Hamiltonian graph ph, Embedding planar graphs o	ohs, Multi sequence as a relation n surface	Hrs 6 6 6 6 8 6 6
Unit 1 2 3 4 5 6 7 8	TitleIntroductionDegreeIsomorphism of graphsTreesConnectivityTraversabilityPlanarityColoring	Graphs an graphs an Degree of Definition Bridges, T Cut-vertic Eulerian g Planar gra Color Prol	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a frees, Minimal Spanning trees res, Blocks, Connectivity graph, Hamiltonian graph ph, Embedding planar graphs o blem, Vertex Coloring	ohs, Multi sequence as a relation n surface	Hrs 6 6 6 8 6 8 6 8
Unit 1 2 3 4 5 6 7 8 Key Te	TitleIntroductionDegreeIsomorphism of graphsTreesConnectivityTraversabilityPlanarityColoringext: Introduction to Graphic	Graphs an graphs an Degree of Definition Bridges, T Cut-vertic Eulerian g Planar gra Color Prol aph Theory	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a Prees, Minimal Spanning trees res, Blocks, Connectivity graph, Hamiltonian graph ph, Embedding planar graphs o blem, Vertex Coloring (reprint) Gary Chartrand, Ping 2	ohs, Multi sequence as a relation n surface Zhang, Tata	Hrs 6 6 6 6 8 6 6 8 8
Unit 1 2 3 4 5 6 7 8 Key Te McGra	TitleIntroductionDegreeIsomorphism ofgraphsTreesConnectivityTraversabilityPlanarityColoringext: Introduction to GraphicwHill	Graphs an graphs an Degree of Definition Bridges, T Cut-vertic Eulerian g Planar gra Color Prol aph Theory	Contents ad Graph model, Connected grap d Digraphs a vertex, Regular graph, Degree of isomorphism, Isomorphism a Grees, Minimal Spanning trees res, Blocks, Connectivity graph, Hamiltonian graph ph, Embedding planar graphs o blem, Vertex Coloring (reprint) Gary Chartrand, Ping 2	ohs, Multi sequence as a relation n surface Zhang, Tata	Hrs 6 6 6 8 6 6 8 8

CC	DDE: N	IDSC- MMS MULTIMEDIA SYSTEMS 4 C	redits		
	Course	Objective:			
	•	The objective of this course is to provide students with a basic understar	nding of		
		multimedia systems.			
	• This course focuses on topics in multimedia information representation and				
		relevant signal processing aspects, multimedia networking and commur	nications,		
		and multimedia standards especially on the audio, image and video com	npression.		
	Course	Outcome:			
	Studen	ts will be able to			
	•	Achieve a basic understanding of multimedia systems.			
	٠	With such background equipment, students would be able to evaluate m	nore		
		advanced or future multimedia systems.			
	•	This course will also arouse students' interest in the course and further r	notivate		
		them towards developing their career in the area of multimedia and inte	ernet		
		applications.			
Unit	Unit	Unit Contents	No. of		
No.	Title		Periods		
1	Unit-I	Introduction to Multimedia: media and data streams: Medium main	12		
		properties of Multimedia systems-multimedia traditional data			
		streams characteristics-Data streams Chrematistics for continuous			
		media-information units-sound/audio: Basic concepts computer			
		image processing.			
2	Unit-II	Video and Animation Basic Concepts – Television computer based	12		
		Animation-Data compression: Storage space coding requirements –			
		Source, entropy and hybrid coding some basic compression			
2	TT · . TT	techniques-JPEGH261-MPEG-DV1	14		
3	Unit-II	Voptical Storage Media: Basic Technology-Video Disks and other	14		
		Anakita akura CDROM Taaku ala ajaa RDiala Multima dia Manlatatian			
1	I Init IV	Architecture-CDKOW Technologies-DDIsk-Wullimedia Workstation	14		
4	Unitiv	Multimedia Design Of Authoring Tools Organizing A	14		
		Multimedia Design Of Authoring Tools Organizing A			
		Systems Video Conferencing Virtual Reality			
Vor To		Systems Video Conferencing Virtual Keality			
1 Mult	xt: i Media .	- Making It Work, by Toy Vaughan, Oshorne McCraw Hill 1993			
$2 M_{11}$	i Media	Networking, by Bohdan O. Sympronicz, McGraw Hill 1995			
3. A N	Aultimed	dia Technology and Applications, by Walter Worth John. Ellis Ha	rwood		
Ltd, Lo	ndon, 19	91.			

COD	E: MDSC-MI	S Management Information System 4	Credits	
	Course Objective	e:		
	Recognize	e contemporary MIS theory and how information systems	s support	
	business s	strategy, business processes, and practical applications in	an	
	organizat	ion.		
	Interrelate	e how various support systems can be used for business o	decisions	
	and to sus	stain competitive advantage.		
	• Describe how the Internet and World Wide Web provide a global platform for			
	e-business, business mobility and communications, collaboration, and cloud			
	computin	g.		
	 Express the 	o [.] The proven value of and relationship between business da	ta, data	
	managem	ent and husiness intelligence	ita) uutu	
	intantagent	ient, und busiless intenigence.		
	Course Outcome	:		
	Students will be a	able to		
	The stude	ent should be able to analyze, evaluate, and make recomm	nendations	
	regarding	business technology and decisions.		
	Problem S	Solving: Students will be required to not only identify pro	blems but	
	also gener	rate solutions and make recommendations based on a log	ical and	
	thorough	analysis of the alternatives.		
	Critical Tl	hinking: Students will be required to evaluate techniques	and	
	processes	to think differently and to solve and resolve problems by	using	
	technolog	v, making informed decisions.	0	
	Commun	ication: Through written and oral analyses of cases, stude	ents will	
	further st	rengthen and enhance their skills in effective communication	tion All	
	assignmen	nts and presentations will be prepared in professional lar	ourse and	
	format		iguuge und	
	Team Wo	rk: Students will work collaboratively, demonstrating co	irtesv	
		reprint atiquette in propering and presenting presentat	ions	
	using app	sophate enquette, in preparing and presenting presentat	10115	
Unit	Unit Title	Unit Contents	No. of	
No.			periods	
1	Foundation	Foundations of Information Systems in Business :	10	
	Concepts	Information Systems in Business, The Components of		
		Information Systems		
2	Information	Using Information Technology for Strategic	12	
	l echnologies	Advantage, Data Resource Management: Technical		

		Foundations of Database Management, Managing	
		Data Resources.	
3	Business	E-Business Systems, Functional Business Systems, and	10
	Applications	Enterprise Business Systems: ERP, SCM, Supporting	
		Decision Making: Decision Support in Business.	
4	Development	Developing Business/IT Strategies :Planning	10
	Processes	Fundamentals, Implementation Challenges	
		Developing Business/IT Solutions: Developing	
		Business Systems, Implementing Business Systems	
5	Management	Security and Ethical, and Societal Challenges of IT	10
	Challenges	,Security Management of Information Technology	

Key Texts:

1. Management Information System, James O'Brien, 11th edition, TMH

Chapters: 1,2,5,7,8,10,11,12,13

References:

1. Management Information System, Oz Thomson Learning 5th edition

2. Management Information System, W.S. Jawadekar, 3rd edition, TMH

3. Information Systems the foundation of E-Business, Steven Alter, 4th Edition Person education

4. Information Technology for management, Turban, McLean, Wetherbe, 4th edition, Wiley

5. Management Information Systems, Jaswal Oxford Press

6. Management Information Systems, Loudon and Loudon, 10th edition, Pearson Educations

COL	CODE: MDSC-MP(T):MICROPROCESSOR: Theory 3 Credits : lab 1 Credit			
	Course Objective:			
	• To equip students with the fundamental knowledge and basic technical competence			
	in the field of Microprocessors.			
	• To emphasize of	on instruction set and logic to build assembly language pro	ograms.	
	• To prepare stud	dents for higher processor architectures and Embedded sys	stems	
	Course Outcome:			
	Students will be able to)		
	Describe archite	ecture of x86 processors.		
	 Interpret the in 	structions of 8086 and write assembly and Mixed language	e programs.	
	• Explain the con	cept of interrupts4. Identify the specifications of periphera	l chip	
	-		-	
Unit	Unit Title	Unit Contents	No. of	
No.			Periods	
1	Overview of VLSI	Applications of Microprocessors & Embedded systems	3	
	technology	in daily life		
2	8085 Microprocessor	Microprocessor Architecture and its Operations,	9	
	Architecture &	Memory, Input/Output, 8085 MPU. Instruction		
	Microcomputer	Classification, Instruction Format. Overview of		
	System	Instruction cycle, machine cycle, T-states, op-code fetch		
		memory read and memory write; Interrupts;		
3	Instruction Set of	Data Transfer (8 Bit, 16 Bit, from memory to µp & from	9	
	8085 μP and	μp to memory) Instructions, Arithmetic (8 & 16 Bit)		
	Assembly Language	Operations, Arithmetic Operation related to Memory,		
	Programming-I	Logic Operations (Including Rotate & Compare),		
		Branch Operations;		
4	Assembly Language	Counter and Time Delays, Stack, Subroutine,	9	
	Programming-II	Conditional Call & Return Instructions; BCD to Binary		
_	T . 1000/	conversions & arithmetic manipulations		
5	Intel 8086	Pin Description, Operating Mode, Registers, Interrupts,	9	
	Microprocessor	Addressing modes. Comparison with 8085		
		microprocessor. Overview of other Microprocessors		
K T		trom Intel, Zilog and Motorola;		
Key Te	xt:		C	
Microp	rocessor Architecture, P	rogramming and Applications with 8085/8080A – Ramesh	5.	

Gaonkar, Wiley Eastern Limited. 5th edition

Reference Books:

1. Fundamentals of Microprocessors and Microcomputers – B.RAM, DhanpatRai Pub. 3rd edition

2. The Intel Microprocessors 8086/8080, 186/286, 386, 486, Pentium and Pentium Pro processor Architecture, Programming and Interfacing – Barry R. Brey, PHI – 3rd edition 3. Understanding of 8085/8086 microprocessor and peripheral ICs- S.K.Sen, New Age International Publishers, 2nd Edition 2010.

CODE: MDSC-MP (P): MICROPROCESSOR 1 Credit					
The follow	The following programs will be simulated and tested on microprocessor hardware.				
Program	Program Title				
No.					
1	Transfer of a block of numbers				
2	Addition of n 8-bit numbers				
3	a) Multiplication by repeated addition				
	b) Multiplication by shift and add method				
4	Sorting to arrange in ascending order				
5	Delay routine for a specified time				
6	16-bit arithmetic (Register pair operations)				
7	BCD to Binary and Binary to BCD Conversion				
8	BCD Addition, BCD Subtraction, Multiplication				
9	Programming with few interface kits like Traffic controller, Elevator, music				
	synthesizer, LCD displays etc.				

	CODE: MDS	C-IR: INFORMATION RETRIEVAL 4 Cred	its	
	Course Objectiv	re:		
	• The main objective of this course is to present the basic concepts in information			
	retrieval and more advance techniques of multimodal based information			
	systems.			
	 Word sta 	tistics, Vector space model (relevance feedback, query expans	sion,	
	documen	t normalization, document re-ranking), evaluation of retrieva	l,	
	generaliz	ed VSM, latent semantic indexing, Web retrieval, data fusion,	meta	
	search, m	nultimodal retrieval, applications.		
	Course Outcom	e:		
	Student will be a	able to		
	 Understa 	nd the underlined problems related to IR and		
	 Acquired 	l the necessary experience to design, and implement real appl	ications	
	using Inf	ormation Retrieval systems.		
Unit	Unit Title	Unit Contents	No. of	
No.			Periods	
1	INTRODUCTI	Boolean retrieval, The term vocabulary and postings lists,	10	
	ON	Dictionaries and tolerant retrieval		
2	Indexing	Index construction, Index compression	12	
3	Scoring	Scoring, term weighting & the vector space model,	10	
		Computing scores in a complete search system		
4	Evaluation and	Evaluation in information retrieval, Relevance feedback &	10	
	Query	query expansion		
	Expansion			
5	Classification	Text classification & Naive Bayes, Vector space	10	
		classification		
Key T	ext:			
Manni	ing, Raghavan and	d Schutze, Introduction to Information Retrieval, 2009,		
Freely	Downloadable (<u>h</u>	<pre>http://nlp.stanford.edu/IR-book/information-retrieval-book.htm</pre>	<u>ml)</u>	
Chapt	Chapters: 1 to 9, 13, 14			

	CODE: N	ADSC-EC: EMBEDDED COMPUTING			
	Course Objective:				
	To have known	owledge about the basic working of a microcontroller	system and its		
	programming in assembly language.				
	• To provide experience to integrate hardware and software for microcontroller				
	applications systems.				
	Course Outcome: S	tudents will be able to			
	• To acquire	knowledge about microcontrollers embedded proce	ssors and their		
	applications				
	• Foster abilit	y to understand the internal architecture and interfac	cing of different		
	peripheral d	evices with Microcontrollers.			
	Foster ability	y to write the programs for microcontroller.			
	Foster ability	y to understand the role of embedded systems in indus	try.		
	Foster ability	y to understand the design concept of embedded syster	ns.		
	-				
Unit	Unit Contents	Topics	No. of Periods		
No		-			
1	An Overview of	Introduction to embedded systems; Complex	12		
	Embedded	systems and			
	Computing	microprocessors, embedded system design process,			
		Design example: Model train controller,			
		Instructions Sets:			
		Preliminaries, ARM Processor			
2	Embedded	Programming Input and output, Supervisor mode,	14		
	Hardware	exceptions and traps, coprocessors, memory system			
	Fundamentals	mechanism, CPU performance,	10		
3	Embedded	Basic computing platforms, CPU bus, memory	12		
	Software and	device and			
1	Program	systems, designing with computing platforms,	1/		
	Design and	programs	14		
	Analysis	assembly, linking and loading, compilation			
	Exercises	techniques.			
		program level performance analysis, optimization,			
		programs			
		validation and testing, system design techniques			
		design methodologies requirement analysis,			
Key Tex	:t:				
1 Correr	utono ao Componente	Dringinlag of Embodded Computing System Design by	TAT a reaso		

1. Computers as Components: Principles of Embedded Computing System Design by Wayne Wolf, Morgan Kauffman Publishers, 2nd edition, 2008.

Chapters:

Chapter 1 (1.11.4), 2 (2.12.3), 3(3.13.6), 4 (4.14.5), 5(5.15.7, 5.95.10), 7(7.17.3), **REFERENCE BOOKS:**

1. Embedded Realtime Systems Programming by SriramIyer and Pankaj Gupta, Tata McGraw

Hill, 2004 (Tenth reprint)

2. Embedded Systems, Raj Kamal, Hill

Pub. Co. Ltd, 11th print 2007. [Chaps 15, Appendix G]

3. An Embedded Software Primer, David E. Simon, Pearson Education, 2007. [Chps 510]

4. Programming for Embedded Systems, Dream Software Team, WILEY dreamtech India Ltd.

2005.

	CO	DE: MDSC-SC:SOFT COMPUTING		
	Course Objective:			
	To conceptua	alize the working of human brain using ANN.		
	To become familiar with neural networks that can learn from available example			
	generalize to form appropriate rules for inference systems.			
	• To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on			
	human experience.			
	To provide the formula of the f	ne mathematical background for carrying out the optimization	n and	
	familiarizing	genetic algorithm for seeking global optimum in self-learning	situation.	
	Course Outcome: S	tudents will be able to)	
	Ability to an	alyze and appreciate the applications which can use fuzzy logi	ic.2.	
	Ability to de	sign inference systems.		
	• Ability to un	derstand the difference between learning and programming a	nd	
	explore prac	tical applications of Neural Networks (NN).	-	
	Ability to an	preciate the importance of optimizations and its use in compu	ter	
	engineering	fields and other domains		
	 Students work 	uld understand the efficiency of a hybrid system and how Neu	ırəl	
	• Students wo	the understand the enclency of a hybrid system and now Net	and its	
		instions	k allu lis	
Tinit			No.of	
No	Unit Title	Unit Contents	NO. OI Periode	
1	INTRODUCTION	Foundations of Fuzzy Set Theory: Fuzzy Sets - Basic	12	
		Definition and Terminology -Set-theoretic Operations -		
		Member Function Formulation and Parameterization –		
		Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If-		
		Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems –		
		Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy		
		Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling.		
		Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent		
		Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Simulated		
2		Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Simulated Annealing - Random Search.	10	
2	ARTIFICIAL	Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Descent Methods - Derivative-free Optimization - Simulated Annealing - Random Search. Basic concepts-Supervised learning - Perceptron - Multilayor Perceptron: Back Propagation Model	10	
2	ARTIFICIAL NEURAL NETWORKS	 Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Descent Methods - Derivative-free Optimization - Simulated Annealing - Random Search. Basic concepts-Supervised learning - Perceptron - Multilayer Perceptron: Back Propagation Model - Unsupervised learning - Competitive learning - 	10	
2	ARTIFICIAL NEURAL NETWORKS	 Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Simulated Annealing - Random Search. Basic concepts-Supervised learning - Perceptron - Multilayer Perceptron: Back Propagation Model - Unsupervised learning - Competitive learning - Kohonen's self-organizing networks - Hopfield network 	10	
2	ARTIFICIAL NEURAL NETWORKS NEURO - FUZZY	 Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Descent Methods - Derivative-free Optimization - Simulated Annealing - Random Search. Basic concepts-Supervised learning - Perceptron - Multilayer Perceptron: Back Propagation Model - Unsupervised learning - Competitive learning - Kohonen's self-organizing networks - Hopfield network Introduction to Neuro - Fuzzy and Soft Computing - 	10	
2	ARTIFICIAL NEURAL NETWORKS NEURO - FUZZY MODELING	 Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Simulated Annealing - Random Search. Basic concepts-Supervised learning - Perceptron - Multilayer Perceptron: Back Propagation Model - Unsupervised learning - Competitive learning - Kohonen's self-organizing networks - Hopfield network Introduction to Neuro - Fuzzy and Soft Computing - Adaptive networks based Fuzzy interface systems - 	10	
2	ARTIFICIAL NEURAL NETWORKS NEURO - FUZZY MODELING	 Member Function Formulation and Parameterization – Fuzzy Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If- Then Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy Models - Input Space Partitioning and Fuzzy Modeling. Optimization: Derivative-based Optimization - Descent Methods - Derivative-free Optimization - Descent Methods - Derivative-free Optimization - Simulated Annealing - Random Search. Basic concepts-Supervised learning - Perceptron - Multilayer Perceptron: Back Propagation Model - Unsupervised learning - Competitive learning - Kohonen's self-organizing networks - Hopfield network Introduction to Neuro - Fuzzy and Soft Computing - Adaptive networks based Fuzzy interface systems - Classification and Regression Trees - Data clustering 	10	

		Fuzzy controls - Evolutionary computation	
4	GENETIC	Survival of the Fittest - Fitness Computations - Cross over -	10
	ALGORITHMS	Mutation - Reproduction - Rank method - Rank space	
		method	
5	OTHER TOPICS	Combinations of Neural Networks and Genetic Algorithms	10
		– Genetic Algorithms and Fuzzy Logic – Neuro-Fuzzy	
		Genetic Approach – Cellular Neural Networks: Fuzzy	
		Cellular Neural Networks – Simple Applications –Soft	
		Computing Based Distributed Intelligent Systems –	
		Elements of Chaos Theory	

Key Text:

Soft Computing and Its Applications, by R.A. Aliev and A.R.Aliev, World Scientific Publishers, 2001.
 Neuro-Fuzzy and Soft Computing, by Jang J.S.R., Sun C.T. and Mizutani, E Prentice Hall 1998.
 Neural Networks: Algorithms, Applications and Programming Techniques, by James A Freeman / David M Skapura, Pearson Education Asia1991.

4.Soft Computing, by Luigi Fortuna, Gianguido Rizzoto, Giuseppe Nunnari, Springer - 2001

REFERENCE BOOKS:

 Fuzzy Sets and Fuzzy Logic, George J. Klir and Bo Yuan, Prentice Hall, USA , 1995.
 Fuzzy Logic with Engineering Applications, by Timothy J. Ross, McGraw Hill, 1997.
 Soft Computing: A fusion of foundations, methodologies and applications, A.Di.Nola, Lakshmi C Jain, Mauro Madravo, Springer – Verlag Berlin Heidelberg, 2004.
 Fundamentals of Neural Networks, by LaureneFausett, Prentice Hall, 1994,.
 Genetic Algorithms: Search, Optimization and Machine Learning, by D. E. Goldberg, Addison

Wesley, N.Y, 1989.

CODE: MDSC-CD : COMPILER DESIGN					
-	Course Objective:				
	• To under	stand the role and functioning of various system programs over a	pplication		
	program	program.			
	• To understand basic concepts and designing of assembler, Macro processor and role				
	of static and dynamic loaders and linkers.				
	• To under	stand the need to follow the syntax in writing an application prog	ram and to		
	learn the	how the analysis phase of compiler is designed to understand the			
	program	mer's requirements without ambiguity.			
	• To synth	esize the analysis phase outcomes to produce the object code that i	s efficient		
	in terms	of space and execution time.			
	Course Outo	zome:			
	Identify	the relevance of different system programs.			
	Describe	the various data structures and passes of assembler design.			
	Identify	the need for different features and designing of macros.			
	Distingut	ish different loaders and linkers and their contribution in developi	ng		
	efficient	user applications.	0		
	Construct	t different parsers for given context free grammars. Justify the nee	d		
	synthesis	s phase to produce object code optimized in terms of high executio	n speed		
	and less	memory usage	1		
		5 0			
Unit	Unit Title	Unit Contents	No. of		
No.			Periods		
1	UNIT I	Introduction - Why compilers? - Programs related to compiler –	2		
		Overview of compilation, Phases of Compilation, Lexical			
		Analysis, The Translation Process - Major Data structures in a			
2		compiler - Boot trapping and porting	E		
2		automata - Regular expressions to DFA	5		
3	UNIT III	Context free grammars and Parsing - The Parsing process -	4		
-		CFG - Parse trees and Abstract Syntax Trees - Ambiguity			
4	UNITIV	Top-Down Parsing - Recursive descent parsing - LL(1) Parsing	7		
		- First and Follow sets - Error recovery			
5	UNITV	Bottom-Up Parsing - Overview - LR(0) parsing - SLR($\overline{1}$) parsing	7		
		- LR(1) and LALR(1) parsing - Error recovery			
6	UNITVI	Semantic analysis - Attribute Grammar - Algorithms for	12		
		attribute computation - Symbol table - Data types and type			
7	UNITVII	Runtime environments - Fully static environment- stack-based	7		

		environment - Fully dynamic environment - Parameter passing		
		mechanisms		
8	UNITVIII	Code Generation - Intermediate code and data structures -	8	
		Basic techniques - Code generation for data structure		
		references - Code generation for control statements and logical		
		expressions - Code generation for functions and procedure		
		calls, Code Optimization		
Key Te	Key Text:			
Compiler Construction: principles and Practice by Kenneth C. Louden, Cengage Learning				
Publish	ners, Indian Ec	lition, 1997	-	

Chapters: 1.1-1.6, 2.1-2.4, 3.1 – 3.4, 4.1 – 4.3, 4.5, 5.1, 5.1 – 5.4, 5.7, 6.1-6.4, 7.1 – 7.5, 8.1 – 8.5

	CODE: MDSC-FL: FORMAL LANGUAGES 4 Credits			
	Course Objective: Differentiate and manipulate formal descriptions of languages, automata and grammars with focus on regular and context-free languages, finite automata and regular expressions.			
	Course Ou	itcome:		
	 Exp lan reg Exp 	plain and manipulate the different concepts in automata theory and forma guages such as formal proofs, (non-)deterministic automata, regular expr ular languages, context-free grammars, context-free languages, Turing m plain the power and the limitations of regular languages and context-free	al essions, achines; languages.	
Unit	Unit	Unit Contents	No. of	
No.	Title		Periods	
1	UNITI	Deterministic Finite Automata, Non-deterministic automata, Equivalence of NFA and DFA, Reduction in number of states in Finite Automata	8	
2	UNIT II	Regular Languages and Regular Grammars: Regular expressions, Connection between regular expressions and regular languages, Regular Grammars, Closure properties of Regular languages, Pumping lemma-Non regular languages.	8	
3	UNIT III	Context free grammars, Parsing Ambiguity, Context free grammars and programming languages, Simplification of complex grammars and their normal forms (Chomsky and Greibach Normal form.	8	
4	UNIT IV	Pushdown Automata: Nondeterministic pushdown automata, deterministic pushdown automata, Pushdown automata and context free languages, Context free grammars and pushdown automata.),Properties of context free languages, Pumping lemma for non- context free languages	8	
5	UNIT V	Hierarchy of formal languages and automata: Recursive languages and Recursively enumerable languages, Unrestricted grammars, Context sensitive grammars and languages, Chomsky hierarchy	10	
6	UNIT VI	Turing machines: Standard Turing machine, Combining Turing machine for complicated tasks, Turing thesis, Variations in Turing machine, Linear Bound automata.	10	
KEY T	EXTS:	rmal Languages And Automata by D Ling Naress Dub 1007		
Introduction To Formal Languages And Automata, by P.Linz, Narosa Pub. 1997. Chapters:				
REFER	ENCES			
1.	Formal Lan	guages, by A. Salomaa, Academic Pub.1973.	1005	
2. Introduction To Formal Languages, by Gyorgy E Revesz, McGraw-Hill Book Co., 1985				

	CODE: MDSC-N	NS: NETWORK SECURITY 4 Credits			
	Course Objective:To explore the design	i issues and working principles of various authentication	ı protocols,		
	PKI standards and various secure communication standards including Kerberos, IPsec,				
	and SSL/TLS and ema	and SSL/TLS and email.			
	 To develop the ability communication 	v to use existing cryptographic utilities to build programs	for secure		
	Course Outcome:				
	• Apply the knowledg	e of cryptographic checksums and evaluate the perfo	ormance of		
	different message dig	est algorithms for verifying the integrity of varying mess	age sizes.		
	 Apply different digita 	al signature algorithms to achieve authentication and des	sign secure		
	applications		0		
	Understand network	security basics, analyze different attacks on networks an	d evaluate		
	the performance of fir	rewalls and security protocols like SSL, IPSec, and PGP.			
	• Analyze and apply sy	stem security concept to recognize malicious code.			
Unit	Unit Title	Unit Contents	No. of		
No.			Periods		
1	Introduction	Computer Security Concepts, The OSI Security	4		
		Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security			
2	Symmetric Encryption	Symmetric Encryption Principles, Symmetric Block Encryption Algorithms, Random and Pseudorandom Numbers, Stream Ciphers and RC4, Cipher Block Modes of Operation	10		
3	Message Authentication	Approaches to Message Authentication, Secure Hash Functions, Message Authentication Codes	4		
4	Public Key Cryptography	Public-Key Cryptography Principles, Public-Key Cryptography Algorithms, Digital Signatures	6		
5	Key Distribution and User Authentication	Kerberos, X.509 Certificates, Public-Key Infrastructure	6		
6	Cloud Security	Cloud Security Risks and Countermeasures, Data Protection in the Cloud, Cloud Security as a Service	4		
7	Transport-Level Security	Web Security Considerations, Secure Sockets Layer (SSL), Transport Layer Security (TLS), HTTPS, Secure Shell (SSH)	6		
8	Electronic Mail Security	Pretty Good Privacy (PGP), S/MIME	6		
9	IP Security	IP Security Overview, IP Security Policy, Encapsulating Security Payload, Combining Security Associations	6		

Key Text:

Cryptography and Network Security : Principles and Practice by William Stallings, 5th edition, Pearson Education Inc.

Chapters: 1.1-1.6, 2.1-2.5, 3.1-3.6, 5.1-5.6, 6.1-6.5, 9.1-9.4, 10.1-10.4, 11.1-11.6, 12.1-12.6, 13.1-13.4, 14.1-14.5, 15.1-15.3, 16.1-16.5, 18.1-18.3, 19.1-19.5

REFERENCE BOOKS:

1. Introduction to Computer and Network Security: Navigating Shades of Gray by Richard R. Brooks, 1st Edition, 2013.

2. Network Security: Private Communication in a public world, by Charlie Kaufman, Radia Perlman and Mike Speciner, IInd Edn, ISBN 0-13-046019-PrenticeHall PTR, 2002.

	CODE: MDSC –CC:	CLOUD COMPUTING 4 Credits	
	 Course Objective: To learn how to use Cloud To implement Virtualizatio To implement Task Schedu Apply Map-Reduce concep To build Private Cloud. Broadly educate to know the impart 	Services. m ling algorithms. of to applications. ct of engineering on legal and societal issues inv	volved
	 Course Outcome: Students will be Analyze the Cloud compu- different architectures. Design different workflow programming model. Apply and design suitable design scheduling algorithm Create combinatorial auction for computing clouds Assess cloud Storage systen develop cloud application Broadly educate to know th in addressing the security i 	e able to Iting setup with it's vulnerabilities and applica ws according to requirements and apply n Virtualization concept, Cloud Resource Manag ms. ons for cloud resources and design scheduling ems and Cloud security, the risks involved, its e impact of engineering on legal and societal issu ssues of cloud computing.	tions using hap reduce gement and algorithms impact and les involved
Unit No	Unit Title	Unit Contents	No. of Poriods
1	Introduction; Principles of Parallel and Distributed Computing	Cloud computing at a glance; Historical Developments; building Cloud computing environment; computing platforms and Technologies Principles of Parallel and Distributed Computing: Eras of Computing; parallel Vs. distributed computing; elements of distributed computing; technologies of Distributed computing	7
2	Virtualization and Cloud Computing Architecture	Characteristics of virtualized environments; virtualization techniques; virtualization and cloud computing; pros and cons of virtualization; examples. Cloud Reference model; Types of clouds; cloud economics; open challenges	8

3	Aneka: Cloud application	Overview; anatomy of the Aneka container;	7
	Platform	building Aneka clouds; cloud programming	
		and management	
4	Concurrent Computing and	Introducing parallelism; programming with	10
	High-Throughput Computing	threads; multithreading with Aneka;	
	and Map Reduce Programming	applications; Task Computing; task based	
		Application Model; Task based	
		Programming;	
		Data Intensive Computing; Technologies;	
		Aneka Map Reduce Programming	
5	Cloud Platforms in Industry and	Amazon Web services; Google App Engine;	8
	Cloud Applications	Microsoft Azure; Cloud scientific	
		Applications; Business and Consumer	
		Applications	
6	Advanced Topics in Cloud	Energy Efficiency Clouds; Market based	12
	Computing and Cloud Security	management clouds; Federated Clouds; Third	
		Party Cloud Services; Infrastructure Security:	
		Network level security, Host level security,	
		and Application level security; Data security	
		and Storage	

Key Text(s):

Mastering Cloud Computing, Editors: Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, MGH-2013

Chapters: 1,2,3,4,5,6,7,8,9,10,11

REFERENCE BOOKS

Cloud Computing: Principles and Paradigms, Editors: RajkumarBuyya, James Broberg, Andrzej M. Goscinski, *Wile*, 2011

Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010

Cloud Computing: Principles, Systems and Applications, Editors: Nikos Antonopoulos, Lee Gillam, *Springer*, 2012

Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, *Wiley-India,* 2010

	CODE: MDSO	C-GT:GAME THEORY 4 Credits		
	 Course Objective: To introduce Game Theory. Game Theory is a mathematical framework which makes possible the analysis of the decision making process of interdependent subjects. It is aimed at explaining and predicting how individuals behave in a specific strategic situation, and therefore help improve decision making. A situation is strategic if the outcome of a decision problem depends on the choices of more than one person. Most decision problems in real life are strategic. The course will explain in depth the standard equilibrium concepts (such as Nash Equilibrium, Subgame-Perfect Nash Equilibrium, and others) in Game Theory. 			
	 Course Outcome: Student wi Identify strategic situation Solve simple games using Analyse economic situation Recommend and prescribe 	If be able to as and represent them as games various techniques ons using game theoretic techniques e which strategies to implement		
Unit No.	Unit Title	Unit Contents	No. of Periods	
1	Introduction	Games and Solutions, Game theory and the Theory of Competitive Equilibrium, Rational Behaviour, The Steady State and Deductive Interpretations, Bounded Rationality, Terminology and Notation.	7	
2	Nash Equilibrium	Strategic Games, Nash Equilibrium, Existence of a Nash Equilibrium, Strictly Competitive Games, Bayseian Games: Strategic Games with Imperfect Information.	7	
3	Mixed, Correlated, and Evolutionary Equilibrium	Mixed Strategy Nash Equilibrium, Interpretations of Mixed Strategy Nash Equilibrium, Correlated Equilibrium, Evolutionary Equilibrium.	7	
4	Rationalizability, Iterated Elimination of Dominated Actions	Rationalizability, Iterated Elimination of Strictly Dominated Actions, Iterated Elimination of Weakly Dominated Actions	7	
5	Knowledge and Equilibrium	A Model of Knowledge, Common Knowledge, Can People Agree to Disagree, Knowledge and Solution Concepts, The Electronic Mail Game	7	

6	Extensive Games with	Extensive Games With Perfect Information, Sub	8
	Perfect Information	game Perfect Equilibrium, two Extensions of the	
		Definition of Game, and The Interpretation of a	
		Strategy, Two Notable Finite Horizon Games,	
		and Iterated Elimination of Weakly Dominated	
		Strategies.	
7	Bargaining Games	Bargaining and Game Theory, A Bargaining	8
		Game of Alternating Offers, Sub game Perfect	
		Equilibrium, Variations and Extensions	

KEY TEXTS:

A Course in Game Theory by, Martin J Osborne and Ariel Rubinstein, The MIT Press, Cambridge Massachusetts, London

Chapters: 1 to 7

REFERENCE BOOKS:

Game Theory by N.N. Vorobev, Springer Verlag Publications, 1977

	CODE: MDSC-PR:	Pattern Recognition 4 Credits		
	 Course Objective: Introduce the concepts of a rules, clustering, support a syntactic pattern recognita The course is part lecture to the class as well as com In addition, programming in constructing pattern recognitation 	feature extraction, Bayesian decision theory, neares vector machines, neural networks, classifier combin ion techniques such as stochastic context-free gram and part seminar: students will present some cours plete and present a research paper. g assignments will provide students with practical cognition systems such as optical character recogniz	t-neighbor nation, and mars. se material experience sers (OCR).	
	 Course Outcome: Student will be able to Explain and compare a variety of pattern classification, structural pattern recognition, and pattern classifier combination techniques. Summarize, analyze, and relate research in the pattern recognition area verbally and in writing. Apply performance evaluation methods for pattern recognition, and critique comparisons of techniques made in the research literature. Apply pattern recognition techniques to real-world problems such as document analysis and recognition. Implement simple pattern classifiers, classifier combinations, and structural pattern 			
Unit No	Unit Title	Unit Contents	No. of Poriods	
1	Introduction	Introduction, Features, Feature Vectors, Classifiers, Supervised, Unsupervised and Semi-Supervised Learning.	4	
2	Classifiers based on Bayes Theory	Introduction, Bayes Decision Theory, Discriminant Functions, Bayes Classification for Normal Distributions, Estimation of Unknown Probability Distributions: ML Parameter Estimation, MAP Estimation, Bayesian Inference, Maximum Entropy Estimation, Mixture Models, Non-Parametric Estimation, the Naïve-Bayes Classifier, the Nearest Neighbor Rule, Bayesian Networks.	10	
3	Linear Classifiers	Introduction, Linear Discriminant Functions and Decisions, Hyper-planes, The Perceptron algorithm, Least Square Methods, Mean Square Estimation Revisited, Logistic Discrimination,	8	

		Support Vector Machines for Separable Classes, SVM for Non-Separable Classes, SVM for Multiclass Case, ३-SVM	
4	Nonlinear Classifiers	XOR Problem, Two Layer Perceptron, Three- Layer Perceptrons, Algorithms based on Exact Classification of Training Set, The Back- Propagation Algorithm, Variation of BP Theme, Choice of Cost Function, Choice of Network Size, Generalized Linear Classifiers, Capacity of d-dimensional space in linear Dichotomies, Polynomial Classifiers, Radial Basis Function Networks, Universal Approximators, Probabilistic Neural Networks, SVM-Nonlinear Case, Beyond SVM Paradigm, Decision Trees, Combining Classifiers, Boosting, Class Imbalance Problem	10
5	Clustering	Introduction, Proximity Measures, Number of Possible Clusterings, Categories of Clustering Algorithms, Sequential Clustering Algorithms, Agglomerative Algorithms, Divisive Algorithms, Hierarchical Algorithms for Large Datasets., Choice of the Best Number of Clusters, Hard Clustering Algorithms, Vector Quantization. Algorithms based on Graph Theory, Competitive Learning algorithms	10
6	Bargaining Games	Bargaining and Game Theory, A Bargaining Game of Alternating Offers, Sub game Perfect Equilibrium, Variations and Extensions	10
Key Te Editior	xt: Pattern Recognition by Sergios , Elsevier Publications, 2009, Chap	Theodoridis and Knostantinos Koutroumbas, Four oters: 1, 2, 3, 4, 11, 12.1-12.3, 13, 14.5, 15.1-15.3.	th

CODE: MDSC- CG (T) : Cryptography Theory 3 Credits :: Lab 1 Cred				
	 Course Objective: To introduce classical encrumber theory. To explore the working p 	cyption techniques and concepts of modular arith	metic and	
	including secret key cryp algorithms.	ptography, hashes and message digests, and p	oublic key	
	 Course Outcome: Student will be able to Understand system security goals and concepts, classical encryption techniques and acquire fundamental knowledge on the concepts of modular arithmetic and number theory. Understand, compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication 			
Unit No.	Unit Title	Unit Contents	No. of Periods	
1	Introduction to Classical Cryptography	Cryptography and modern cryptography, Setting of private key encryption, Historical ciphers and their Cryptanalysis, Principles of modern cryptography, Perfectly secret encryption, One-Time Pad, Limitations of Perfect Secrecy	6	
2	Private-Key Encryption	Computational Security, Defining Computationally Secure Encryption, Constructing Secure Encryption Schemes, Stronger Security Notions, Constructing CPA- Secure Encryption Schemes, Modes of Operation, Chosen-Ciphertext Attacks	6	
3	Message Authentication Codes and Hash Functions	Message Integrity, Message Authentication Codes – Definitions, Hash Functions – Definitions, Merkle–Damgard Transform, Birthday Attacks on Hash Functions	6	
4	Number Theory and Key Exchange	Preliminaries and Basic Group Theory, Factoring and RSA, Cryptographic Assumptions in Cyclic Groups, Key Exchange and the Diffie–Hellman Protocol	7	

5	Public-Key Encryption	Public-Key Encryption – An Overview and	8	
		Definitions, Hybrid Encryption and KEM/DEM		
		paradigm, RSA Encryption – Plain RSA,		
		Padded RSA and PKCS #1 v1.5		
6	Digital Signature Schemes	Digital Signatures – An Overview and	6	
		Definitions, Hash-and-Sign Paradigm, RSA		
		Signatures – Plain RSA, Schnorr Signature		
		Scheme		
Key Text: 1. Introduction to Modern Cryptography by J. Katz and Y. Lindell, Second edition, C				
Press, 2	2015, Chapters & Sections: 1.1-1.4, 2.	1-2.3, 3.1-3.6, 3.7.1, 4.1-4.3, 5.1-5.2, 5.4.1-5.4.2, 8.1.1-8	8.1.4, 8.2.1,	
8.2.3-8.	2.4, 8.3.1-8.3.3, 10.3, 11.1-11.3, 11.5.1	-11.5.2, 12.1-12.3, 12.4.1, 12.5.1, 12.8.		
References:				
S. Gold	S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, July 2008.			
ava	available online: https://cseweb.ucsd.edu/~mihir/papers/gb.pdf.			

C. Paar and J. Pelzl, Understanding Cryptography, Springer, 2010.

MDSC-CG (P): Cryptography - Lab- 1 Credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

COI	CODE: MDSC-PP (T):Parallel Processing Theory 3 Credits :: Lab 1 Credit				
	Course Objective: Theoretical and practical surv	ev of parallel processing, including a discussion	of parallel		
	architectures, parallel program more parallel computers in a h	ming language, and parallel algorithms. Programm igher-level parallel language	ing one or		
	 Course Outcome: Students will be able to Compute speedup, efficiency, and scaled speedup of parallel computations, given appropriate data. Apply Amdahl's Law to predict the maximum speedup achievable from a parallel version of a sequential program, given its execution profile. Analyze the iso-efficiency of a parallel algorithm. 				
	networks with respect t	to diameter, bisection width, and number of edges/	node		
Unit No.	Unit Title	Unit Contents	No. of Periods		
1	introduction	Modern Parallel Computers - Types of Concurrency – Programming.	3		
2	Parallel Architecture	Interconnection Network – Processor arrays – Multiprocessors – Multi Computers – Flynn's taxonomy	5		
3	Parallel Algorithm Design	Foster's Design Methodology – Example Problems.	4		
4	Algorithms for Illustrations	Sieve of Eratosthenes – Floyd's Algorithm.(To discuss all the concepts introduced so far).	4		
5	Performance analysis	Speed up and Efficiency – Amdahl's Law – Gustafson's Barsis Law – Karp Flatt Metric – Isoefficiency Metric	4		
6	Matrix Vector Multiplication	Monte Carlo Methods – Matrix Multiplication – Solving linear System - finite Difference Methods - sorting algorithm - combinatorial Search.	14		
7	Shared Memory Programming	Open MP	5		
Kev Te	ext:				
Paralle	l Programming in C with MPI ar	nd OpenMP by Michale J Quinn, Tata McGraw Hil	1 2004		
Refere	nce Book: Introduction to Paralle	el Computing by AnanthaGrama, Anshul Gupta, G	George		
Karypi	s, Vipin Kumar, Pearson educati	on LPE, Second edition, 2004.			

MDSC-PP (P): PARALLEL PROCESSING (1 Credit),

This will be evaluated internally.

- 1. Message Passing programming Model MPI Point to Point & Collective Calls.
- 2. Document classification Problem
- 3. Matrix Vector & Matrix Matrix Multiplication
- 4. Parallel Quick Sort 5. Shared Memory Programming Open MP

COD	CODE: MDSC- NLP (T): NATURAL LANGUAGE PROCESSING –				
		(3 Credit- 39	Periods)		
	Course Objective: To understand natural language processing and to learn how to apply basic algorithms in this field. To get acquainted with the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language data - corpora. To conceive basics of knowledge representation, inference, and relations to the artificial intelligence				
	Course Outcome: The students will get acquainted with natural language processing and learn how to apply basic algorithms in this field. They will understand the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language data - corpora. They will also grasp basics of knowledge representation, inference, and relations to the artificial intelligence.				
Unit No.	Unit Title	Unit Contents	No. of Periods		
1	UNIT -1	Introduction to Languages And Grammars - Transformational Grammars of Natural Language	13		
2	UNIT -2	Two-Level Representation - Transition Networks - From Grammar To Acceptor	13		
3	UNIT-3	Two Level Processing Systems RTN's And ATN's- Issues And Applications.	13		
Key Te	xt 1. Computer Processing Of Na	atural Language, by Gilbert K. Krulee, Prentice Hal	1 1991.		

MDSC-NLP (P): Lab: NATURAL LANUAGE PROCESSING - 1 Credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

* * *

	CODE: MDSC- IOT (T): Internet of Things Theory 3 Credits ::				
		Lab 1 Credit			
	Course Objective: Students will be explored to the cyberspace. They are also	the interconnection and integration of the physical able to design & develop IOT Devices.	world and		
	Course Outcome: Students will be able to Understand the applic Realize the revolution Understand building	cation areas of IOT of Internet in Mobile Devices, Cloud & Sensor Net blocks of Internet of Things and characteristics.	tworks		
Unit No.	Unit Title	Unit Contents	No. of Periods		
1	introduction	What is the Internet of Things? : History of IoT, About IoT, Overview and Motivations, Examples of Applications, Internet of Things Definitions and Frameworks : IoT Definitions, IoT Architecture, General Observations, ITU -T Views, Working Definition, IoT Frameworks, Basic Nodal Capabilities	4		
2	FUNDAMENTAL IoT MECHANISMS AND KEY TECHNOLOGIES	Identification of IoT Objects and Services, Structural Aspects of the IoT, Environment Characteristics, Traffic Characteristics, Scalability, Interoperability, Security and Privacy, Open Architecture, Key IoT Technologies, Device Intelligence, Communication Capabilities, Mobility Support, Device Power, Sensor Technology, RFID Technology, Satellite Technology	4		
3	RADIO FREQUENCY IDENTIFICATION TECHNOLOGY	RFID: Introduction, Principle of RFID, Components of an RFID system, Issues EPCGlobal Architecture Framework: EPCIS & ONS, Design issues, Technological challenges, Security challenges, IP for IoT, Web of Things. Wireless Sensor Networks: History and context, WSN Architecture, the node, Connecting nodes, Networking Nodes, Securing Communication WSN specific IoT applications, challenges: Security, QoS,	6		

		Configuration, Various integration approaches, Data link layer protocols, routing protocols and infrastructure establishment.	
4	RESOURCE MANAGEMENT IN THE INTERNET OF THINGS	Clustering, Software Agents, Clustering Principles in an Internet of Things Architecture, Design Guidelines, and Software Agents for Object Representation, Data Synchronization. Identity portrayal, Identity management, various identity management models: Local, Network, Federated and global web identity, user -centric identity management, device centric identity management and hybrid -identity management, Identity and trust.	10
5	INTERNET OF THINGS PRIVACY, SECURITY AND GOVERNANCE	Vulnerabilities of IoT, Security requirements, Threat analysis, Use cases and misuse cases, IoT security tomography and layered attacker model, Identity establishment, Access control, Message integrity, Non-repudiation and availability, Security model for IoT.	6
6	BUSINESS MODELS FOR THE INTERNET OF THINGS	Business Models and Business Model Innovation, Value Creation in the Internet of Things , Business Model Scenarios for the Internet of Things. Internet of Things Application : Smart Metering Advanced Metering Infrastructure, e-Health Body Area Networks, City Automation, Automotive Applications, Home Automation, Smart Cards,	9

Key Text:

- 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978 -1-18-47347-4, Willy Publications.
- 2. Bernd Scholz-Reiter, Florian ichahelles, Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-9157-2, Springer
- 3. Parikshit. ahalle&Poonam N. Railkar, "Identity Management for Internet of Things", River Publishers,

Reference Books

- 4. HakimaChaouchi, "The Internet of Things Connecting Objects to the Web" Willy Publications
- 5. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications and Protocols, 2nd Edition, Willy Publications
- 6. Daniel Kellmereit, Daniel Obodovski, "The Silent Intelligence: The Internet of Things", Publisher: Lightning Source Inc; 1 edition.
- 7. Fang Zhaho, Leonidas Guibas, "Wireless Sensor Network: An information processing approach", Elsevier,

CODE: MDSC- IOT (P) – Internet of Things – 1 Credit

LAB Assignments: This will be evaluated internally.

Internet of things: Overview, technology of the internet of things, enchanted objects, Design principles for connected devices, Privacy, Web thinking for connected devices Writing Code: building a program and deploying to a device, writing to Actuators, Blinking Led, Reading from Sensors, Light Switch, Voltage Reader, Device as HTTP Client, HTTP, Push Versus Pull. Pachube, Netduino, Sending HTTP Requests—the Simple Way, Sending HTTP Requests—the Efficient Way.

HTTP: Device as HTTP Server, Relaying Messages to and from the Netduino, Request Handlers, WebHtml, Handling Sensor Requests, Handling Actuator Requests Going Parallel: Multithreading, Parallel Blinker, prototyping online components, using an API, from prototypes to reality, business models, ethics, privacy, disrupting control, crowdsourcing

		CODE: MDSC- DL: Deep Learning 4 Credits			
	Course Objection To learn the buunderstand the optimization, dia audio processin	ve: asics of neural networks, convolutional networks, recurrent a concepts such as dropout, batch normalization, types of hyper-p stributed and constrained computing variants. Applications in t g and image captioning and vision.	networks; parameter he area of		
	Course Outcome:				
	 The fundamental principles, theory and approaches for learning with deep neural networks The main variants of deep learning (such convolutional and recurrent architectures), and their typical applications The key concepts, issues and practices when training and modeling with deep architectures; as well as have hands-on experience in using deep learning frameworks for this purpose How to implement basic versions of some of the core deep network algorithms (such as back propagation) How deep learning fits within the context of other ML approaches and what learning tasks it is considered to be suited and not well suited to perform 				
Unit No.	Unit Title	Unit Contents	No. of Periods		
1	Basics of Deep leaning- Deep learning architectures	Convolutional Neural Networks : Neurons in Human Vision- The Shortcomings of Feature Selection-Vanilla Deep Neural Networks Don't Scale-Filters and Feature Maps-Full Description of the Convolutional Layer-Max Pooling-Full Architectural Description of Convolution Networks-Closing the Loop on MNIST with Convolutional Networks-Image Preprocessing Pipelines Enable More Robust Models- Accelerating Training with Batch Normalization-Building a Convolutional Network for CIFAR-10-Visualizing Learning in Convolutional Networks Leveraging Convolutional Filters to Replicate Artistic Styles-Learning Convolutional Filters for Other Problem Domains-Training algorithms.	14		
2	Memory Augmented Neural Networks	Neural Turing Machines-Attention-Based Memory Access- NTM Memory Addressing Mechanisms-Differentiable Neural Computers-Interference-Free Writing in DNCs-DNC Memory Reuse-Temporal Linking of DNC Writes-Understanding the	12		

		DNC Read Head-The DNC Controller Network Visualizing the DNC in Action-Implementing the DNC in Tensor Flow- Teaching a DNC to Read and Comprehend.	
3	Deep Reinforcement Learning	Deep Reinforcement Learning Masters Atari Games What Is Reinforcement Learning?-Markov Decision Processes (MDP)- Explore Versus Exploit-Policy versus Value Learning-Pole- Cart with Policy Gradients-Q-Learning and DeepQ- Networks-Improving and Moving Beyond DQN.	12
4	Implementing Neural Networks in Fensor Flow	What Is Tensor Flow?-How Does Tensor Flow Compare to Alternatives?-Installing Tensor Flow-Creating and Manipulating Tensor Flow Variables-Tensor Flow Operations-Placeholder Tensors-Sessions in Tensor Flow- Navigating Variable Scopes and Sharing Variables-Managing Models over the CPU and GPU-Specifying the Logistic Regression Model in Tensor Flow-Logging and Training the Logistic Regression Model-Leveraging Tensor Board to isualizeComputationGraphsandLearning- BuildingaMultilayerModelforMNISTinTensorFlow. Applications: Deep learning for computer vision, Deep Learning Applications at the enterprise Scale, Deep Learning Models for Healthcare Applications.	14

Key Texts:

Nikhil Buduma, Nicholas Locascio, "Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms", O'Reilly Media, 2017. 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning (Adaptive Computation and Machine Learning series", MIT Press, 2017.

References:

Ian Goodfellow, YoshuaBengio, Aaron Courville. Deep Learning.

Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001. Theodoridis, S. and Koutroumbas, K. Pattern Recognition. Edition 4. Academic Press, 2008. Russell, S. and Norvig, N. Articial Intelligence: A Modern Approach. Prentice Hall Series in Articial Intelligence. 2003. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer. 2001. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press. 2009.

COD	E: MDSC-IP (T)	Image Processing Theory 3 Credits : Lab	l Credit			
	Course Objective:					
	• This course is an introduction to the fundamental concepts and techniques in basic					
	digital image processing and their applications to solve real life problems.					
	• The topics covered include Digital Image Fundamentals, Image Transforms, Image					
	Enhancement,	Restoration and Compression, Morphological Image I	Processing,			
	Nonlinear Imag	ge Processing, and Image Analysis.	0			
	Course Outcome: Stud	lent will be able to				
	Familiar with b	asic image processing techniques for solving real problems.				
	Have sufficient	expertise in both the theory of two-dimensional signal proc	essing and			
	its wide range	of applications, for example, image restoration, image co	npression.			
	and image anal	vsis				
Unit	Unit Titlo	Unit Contonts	No. of			
No	Ont The	Chit Contents	Periods			
1	Introduction	Fundamental Steps in Digital Image Processing -	6			
-		Components of an Image Processing System	0			
2	Image processing	Elements of visual perception – Light and	6			
	Fundamentals	electromagnetic spectrum – image sensing and				
		acquisition - Image Sampling and Quantization- Basic				
		Relationships between Pixels – An introduction to				
		mathematical tools used in digital image processing				
3	Intensity	Some basic intensity transformation functions -	6			
	Transformations and	Histogram Processing – Fundamentals of spatial				
	Spatial Filtering	filtering- Smoothing and sharpening spatial filters -				
		combining spatial enhancement methods				
4	Filtering in the	Sampling and the Fourier transform of sampled	6			
	frequency domain	functions – basics of filtering in the frequency domain –				
		image smoothing and sharpening using frequency				
		domain filters – selective filtering				
5	Image Restoration	Model for image degradation and restoration process –	9			
	and Reconstruction	noise models – restoration in the presence of noise only				
		spatial filtering – periodic noise reduction by frequency				
		domain filtering – linear position invariant degradations				
		– estimating the degradation function – inverse filtering				
6	Image Segmentation	Point, line and edge detection – thresholding – region	6			
		based segmentation				
Key Te	xt: Digital Image Proces	sing –by Rafael. C. Gonzalez & Richard E. Woods. 3rd Editi	on,			
Pearson	n Education, 2002. [Chap	oters 1, 2, 3.1 to 3.7, 4.1 to 4.10, 5.1 to 5.7, 10.1 to 10.4]				
2. Rele	vant research papers sel	ected for the course by the instructor				
Referer	nces: Image Processing –	The Fundamentals by Maria Petrou and Costas Petrou, Sec	ond			

Edition, John Wiley and Sons, 20102. Fundamentals of Digital Image Processing, by Anil. K. Jain , Eastern Economy Edition, Prentice Hall of India 1997

MDSC-IP (P) Image Processing – Lab - 1 credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally

* * *

CODE	CODE: MDSC-CV (T) Computer Vision Theory 3 Credits : Lab 1 Credit				
	Course Objective:				
	• To introduce students the fundamentals of image formation;				
	• To develop an appreciation for various issues in the design of computer vision and				
	object recognit	tion systems; and to provide the student with pro	gramming		
	experience fro	om implementing computer vision and object r	recognition		
	applications.				
	Course Outcome:				
	Student will be able to				
	 Identify basic c 	oncepts, terminology, theories, models and methods in	the field of		
	computer visio	n			
	Describe know	n principles of human visual system			
	• Describe basic	methods of computer vision related to multi-scale repr	esentation,		
	edge detection	and detection of other primitives, stereo, motion a	and object		
	recognition	-			
	• Suggest a desig	n of a computer vision system for a specific problem			
Unit	Unit Title	Unit Contents	No. of		
No.			Periods		
1	Review of pre-	Motivation, Image Representation and Image	6		
	requisites -1	Analysis Tasks, Image Representations, a Few			
		Concepts - Image Digitization, Sampling,			
		Quantization, Digital Image Properties, Metric and			
		Topological Properties of Digital Images, Histograms,			
		Entropy, Image Quality, Noise in Images, Color			
		Images, Color Spaces, Cameras: An Overview			
2	Review of pre-	The Image, its Mathematical and Physical Background	6		
_	requisites-II	Overview / Linearity / The Dirac Distribution and	Ŭ		
	1	Convolution / Linear Integral Transforms / Images as			
		Linear Systems / Introduction to Linear Integral			
		Transforms / 1D Fourier Transform / 2D Fourier			
		Transform / Sampling and the Shannon Constraint /			
		Discrete Cosine Transform / Wavelet Transform /			
		Eigen-Analysis / Singular Value Decomposition /			
		Principle Component Analysis / Other Orthogonal			
		Image Transforms / Images as Stochastic Processes /			
		Images as Radiometric Measurements / Image Capture			
		and Geometric Optics / Lens Aberrations and Radial			
		of View / Surface Reflectance /			
		or view / Surface Reflectance /			
2	Review of pre- requisites-II	The Image, its Mathematical and Physical Background Overview / Linearity / The Dirac Distribution and Convolution / Linear Integral Transforms / Images as Linear Systems / Introduction to Linear Integral Transforms / 1D Fourier Transform / 2D Fourier Transform / Sampling and the Shannon Constraint / Discrete Cosine Transform / Wavelet Transform / Eigen-Analysis / Singular Value Decomposition / Principle Component Analysis / Other Orthogonal Image Transforms / Images as Stochastic Processes / Images as Radiometric Measurements / Image Capture and Geometric Optics / Lens Aberrations and Radial Distortion / Image Capture from a Radiometric Point of View / Surface Reflectance /	6		

3	Data Structures for	Levels of Image Data Representation / Traditional	6
	Image Analysis	Image Data Structures / Matrices / Chains /	
		Topological Data Structures / Relational Structures /	
		Hierarchical Data Structures / Pyramids / Quadtrees /	
		Other Pyramidal Structures	
4	Segmentation	Watershed Segmentation / Region Growing Post-	6
		Processing / Matching / Matching Criteria / Control	
		Strategies of Matching / Evaluation Issues in	
		Segmentation / Supervised Evaluation /	
		Unsupervised Evaluation/Mean Shift Segmentation /	
		Active Contour Models - Snakes / Traditional Snakes	
		and Balloons / Extensions / Gradient Vector Flow	
		Snakes / Geometric Deformable Models - Level Sets	
		and Geodesic Active Contours / Towards 3D Graph-	
		Based Image Segmentation / Simultaneous Detection	
		of Border Pairs / Sub-optimal Surface Detection /	
		Graph Cut Segmentation / Optimal Single and	
		Multiple Surface Segmentation	
5	Shape	Region Identification / Contour-Based Shape	5
	Representation and	Representation and Description / Chain Codes /	
	Description	Simple Geometric Border Representation / Fourier	
		Transforms of Boundaries / Boundary Description	
		using Segment Sequences / B-Spline Representation /	
		Other Contour-Based Shape Description Approaches	
		/ Shape Invariants / Region-Based Shape	
		Representation and Description / Simple Scalar	
		Region Descriptors / Moments / Convex Hull / Graph	
		Representation Based on Region Skeleton / Region	
		Decomposition / Region Neighborhood Graphs /	
		Shape Classes	
6	Object Recognition	Knowledge Representation / Statistical Pattern	5
		Recognition / Classification Principles / Classifier	
		Setting / Classifier Learning / Support Vector	
		Machines / Cluster Analysis / Neural Nets / Feed-	
		Forward Networks / Unsupervised Learning /	
		Hopefield Neural Nets / Syntactic Pattern	
		Recognition / Grammars and Languages / Syntactic	
		Analysis, Syntactic Classifier / Syntactic Classifier	
		Learning, Grammar Inference / Recognition as Graph	
		Matching / Isomorphism of Graphs and Sub-Graphs /	
		Similarity of Graphs / Optimization Techniques in	
		Recognition.	

7	Image	Image Understanding Control Strategies / Parallel	5
	Understanding	and Serial Processing Control / Hierarchical Control /	
		Bottom-Up Control / Model-Based Control /	
		Combined Control / Non-Hierarchical Control /	
		RANSAC: Fitting via Random Sample Consensus /	
		Point Distribution Models / Active Appearance	
		Models / Pattern Recognition Methods in Image	
		Understanding / Classification-Based Segmentation /	
		Contextual Image Classification / Boosted Cascade of	
		Classifiers for Rapid Object Detection / Scene	
		Labeling and Constraint Propagation / Discrete	
		Relaxation / Probabilistic Relaxation / Searching	
		Interpretation Trees / Semantic Image Segmentation	
		and Understanding / Semantic Region Growing	

Key Text:

1. Image Processing, Analysis, and Machine Vision by Milan Sonka, Vaclav Hlavac, Roger Boyle. 3rd Ed, Thomson Brooks/Cole Pub.

References:

"Computer Vision: A Modern Approach" by David A. Forsyth and Jean Ponce, Prentice Hall of India, 2006Emanuele Trucco, Alessandro Verri, "Introductory Techniques for 3-D Computer Vision", Prentice Hall, 1998. 2) Robert M. Haralick and Linda G. Shapiro, "Computer and Robot Vision", AddisonWesley. 3) Mubarak Shah, "Fundamentals of Computer Vision", Free E-Book available at Authors site: http://vision.eecs.ucf.edu/faculty/shah.html

* * *

MDSC-CV (P) - Computer Vision – Lab – 1 credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally

* * *

	CODE: M	DSC-RO	Robotics	4 Credits	
	Course Objective: To introduce th Provide an intr	ne fundamental oductory under	concepts in robotic	CS. CS.	
	Course Outcome: Students will be expos manipulators, coordir techniques, sensors an	ed to a broad ra nate transforma d devices, robo	ange of topics in ro ation and kinemat t applications and e	botics with emphasis c ics, trajectory plannir economics analysis.	on basics of ng, control
Unit No.	Unit Title	Unit Contents	5		No. of Periods
1	Introduction	Introduction - usage, Science websites, text	- brief history, type and Technology o books and research	es, classification and f robots, Some useful journals.	4
2	Elements of robots joints, links, actuators, and sensors	Position and o Homogeneou joints, link rep Examples of I different kind brushless mot of transmissio external senso tachometers, s proximity and vision.	prientation of a rigi s transformations, 1 presentation using 1 D-H parameters and s of actuators – step cors, model of a DC ons, Purpose of sens ors, common senson strain gauge based l distance measurir	d body, Representation of D-H parameters, d link transforms, oper, DC servo and servo motor, Types sors, internal and cs – encoders, force-torque sensors, ng sensors, and	4
3	Kinematics of serial robots	Introduction, Examples of k manipulators, kinematics of Tractrix based multi-body sy Solution proce Inverse kinem manipulator.	Direct and inverse inematics of comm workspace of a ser constrained and re l approach for fixed stems, simulations edures using theory natics solution for th	kinematics problems, non serial rial robot, Inverse dundant robots, d and free robots and and experiments, y of elimination, ne general 6R serial	6
4	Kinematics of parallel robots	Degrees-of-fre manipulators, and loop-clost problem, Mob form and num	eedom of parallel m Active and passive ure equations, Dire bility of parallel ma nerical solution, Inv	nechanisms and e joints, Constraint ct kinematics nipulators, Closed- verse kinematics of	8

		parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.	
5	Velocity and statics of robot manipulators	Linear and angular velocity of links, Velocity propagation, Manipulator Jacobians for serial and parallel manipulators, Velocity ellipse and ellipsoids, Singularity analysis for serial and parallel manipulators, Loss and gain of degree of freedom, Statics of serial and parallel manipulators, Statics and force transformation matrix of a Gough-Stewart platform, Singularity analysis and statics.	6
6	Dynamics of serial and parallel robots	Mass and inertia of links, Lagrangian formulation for equations of motion for serial and parallel manipulators, Generation of symbolic equations of motion using a computer, Simulation (direct and inverse) of dynamic equations of motion, Examples of a planar 2R and four-bar mechanism, Recursive dynamics, Commercially available multi-body simulation software (ADAMS) and Computer algebra software Maple.	6
7	Motion planning and control	Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid Position/ force control, Advanced topics in non-linear control of manipulators.	5
8	Modeling and control of flexible robots	Models of flexible links and joints, Kinematic modeling of multi-link flexible robots, Dynamics and control of flexible link manipulators, Numerical simulations results, Experiments with a planar two- link flexible manipulator	4

9	Modeling and analysis of wheeled mobile robots	Introduction and some well-known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three- wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.	4
10	Advanced topics in robotics	Introduction to chaos, Non-linear dynamics and chaos in robot equations, Simulations of planar 2 DOF manipulators, Analytical criterion for unforced motion. Gough-Stewart platform and its singularities, use of near singularity for fine motion for sensing, design of Gough-Stewart platform based sensors. Over-constrained mechanisms and deployable structures, Algorithm to obtain redundant links and joints, Kinematics and statics of deployable structures with pantographs or scissor-like elements (SLE's).	5
Key Te	xt:	to and Analysis Optand University Drees Second Jacobie	Mari
Kobofia	rs, Filindamental (Concer	ots and Analysis Uxford University Press. Second reprint	May

Robotics: Fundamental Concepts and Analysis Oxford University Press, Second reprint, May 2008.

	CODE: MDSC – ARM	Advanced Regression Methods- 4 credits		
	Course Objective: Regression methods is one of the most powerful methods in statistics for determining the relationships between variables and using these relationships to forecast future observations. The foundation of regression analysis is very helpful for any kind of modelling exercises. Regression models are used to predict and forecast future outcomes. Its popularity in finance is very high; it is also very popular in other disciplines like life and biological sciences, management and engineering.			
	 Course Outcome: Develop the skill set to develop a deeper understanding of the non-linear regression model and its limitations; 			
Unit	Торіс	Details	Hours	
1	Non Linear Regression	Origin, Non Linear Least squares, Transformation to Linear Model, Parameter Estimation, Statistical Inference	10	
2	Polynomial Regression	Models in one, two or more variables, Non parametric Regression, Orthogonal Polynomials	10	
3	Generalized Linear Models	Logistic Regression, Poisson Regression, Generalized Linear Model	10	
4	Regression Analysis of Time Series Data	Models, Detecting Auto Correlation, Durbin-Watson test, Estimating Parameters	10	
5	Advanced Topics	Robust Regression, Effect of Measurement Errors, Inverse Estimation, Bootstrapping, Classification and Regression Trees, Neural Networks	12	

Key Text:

Introduction to Linear Regression Analysis by Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining, 5th Edition, Wiley.

Chapters: 7, 12 - 15.

References:

Applied Regression Analysis - Norman Draper and Harry Smith, 3rd Edition
