Ph.D. Programme in Chemistry

Model Question Paper

RESEARCH APTITUDE ASSESSMENT TEST

Time : 2 Hours

Max. Marks : 75

I. **Part A:** Multiple Choice Questions 30 x 1 mark = 30 marks

Choose the correct Response viz., A, B, C, D or E for the Questions from 1 - 30 which carry ONE mark each. Please NOTE that an **incorrect response** will attract **negative marking**. (For Multiple Choice question with 5 options, ¹/_{4th} mark shall be deducted for an incorrect answer.)

1.	The first half-life of a zeroth order reaction is 200s. The duration of the next half-									- life is	`
	A) 200s	B)	100s	C)	400s	D)	50s	E) cannot be predicted	d (x)
2.	Consider the	follow	ing par	callel re	eactions	5:			(,)
	$\begin{array}{ccc} A & \rightarrow \\ B & \rightarrow \\ \text{If the rate co} \end{array}$	B, rate C, rate	e const e const are equ	ant k1, ant k2, a ual at 3	activati activati 20 K, t	ion ene on ene he tem	rgy 45 gy 69.	.3kJmol-1 8kJmol-1 re at which $k_1/k_2 = 2$, is	s	~)
	A) 298 K		B) 25	0 K	,	C) 27	3 K	D) 310 K	E) 22	25 K	
3.	Oxygen for according to	Oxygen for metabolism is taken up by Haemoglobin(Hb) to form oxyhaemoglobin(HbC according to the simplified equation						(HbO) 2)		
	Hb(aq)	+	O2(aq)	\rightarrow	HbO2	(aq)		()
	Where the second order rate constant is 2.1×10 6 M-1s-1 at 37oC. For an average adult, the concentrations of Hb and O ₂ in the blood and in the lungs are 8×10 -6 M and 1.5×10 -6 M respectively. The rate of formation of HbO ₂ is						5				
	A) 5x10-5Ms D) 1x10-4Ms	5-1 5-1	B) 5x E) 2.5	10-4Ms 5x10-4N	-1 [S-1	C) 2.5	5x10-5N	M S-1			
4.	The NMR si using a spect	gnal of tromete	a comp r opera	pound inting at	is found 60MH	l to be z. The	240Hz chemic	downfield from the TM cal shift δ in ppm relativ	MS peave ve to 7	ak ГMS i	S

A) 2 ppm	B) 3 ppm	C) 5 ppm
D) 4 ppm	E) 6 ppm	

)

(

5.	Which one of the following compounds is coloured?A) benzeneB) naphthaleneC) anthraceneD) cyclohexaneE) tetracene	()
6.	Which one of the following compounds/ ions has point group D3?A) [CoF6] 3-B) [CoCl6] 3-C) [Co(en)3] 3+D) [Co(gly)3]E) [CoBr6] 3-	()
7.	Crystallisation of sodium acetate from a super saturated solution occurs spon Which one of the following is true from this observation? A) $\Delta G = -ve$, $\Delta S = -ve$, $\Delta H = -ve$ B) $\Delta G = -ve$, $\Delta S = -ve$, $\Delta H = +ve$ C) $\Delta G = -ve$, $\Delta S = +ve$, $\Delta H = -ve$ D) $\Delta G = +ve$, $\Delta S = -ve$, $\Delta H = -ve$ E) $\Delta G = -ve$, $\Delta S = +ve$, $\Delta H = +ve$	ontaneo (usly.)
8.	Consider the following system at equilibrium $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$	()
	The number of phases (P), components(C) and degrees of freedom are A) P= 3, C=1,F= 0 B) P= 3, C=2,F= 1 C) P= 3, C=3,F= 2 D) P= 2, C=1, F= 1 E) P= 2, C=2,F= 2		
9.	Among the following molecules identify the one whose symmetry number A) BF ₃ B) SO ₂ C) CHCl ₃ D) CH ₄ E) NH ₃	is 12.	()
10.	Using the following standard reduction potentials, $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		()
11.	Which one of the following species/molecules can be detected by ESR species.	rboast	py? ()
12.	 [M+2]+ peak of 33% abundance is observed in the mass spectrum of (A) Iodobenzene B) Fluorobenzene C) Phenol D) Bromobenzene E) Chlorobenzene)	1011

- 13. In the 13C NMR spectrum a peak at~δ175 is observed. The compound is ()
 A) Paracetamol B) p-Aminophenol C) Phenol
 D) Catechol E) Resorcinol
- 14. Which one of the following techniques is the most suitable to study the composition of lemon grass oil?) A) HPLC B) GC-MS C) TGA D) IR E) NMR 15. Among the following identify the most stable dimethylcyclohexane. () A) cis-1,2 B) trans-1.2 C) cis-1.3 D) trans-1,4 E) cis-1,4
- 16. to 30.

Part - B

II. Answer any 9 of the following in about 150 words each in the sheets provided with the question paper:

(9 x 5 = 45 marks)

1. The pre-exponential factor and activation energy for the hydrolysis of t-butyl chloride are 2.1 x 10₁₆ s-1 and 102 kJmol-1, respectively. Calculate the values of Δ S 0± and

 ΔH o \pm at 286 K for the reaction.

2. The hydrolysis of urea,

 $(NH_2)_2CO + H_2O \rightarrow 2NH_3 + CO_2$

has been studied by many researchers. At 100_{0} C, the pseudo first order rate constant is $4.2x10_{-5}$ S-1. The reaction is catalyzed by the enzyme urease, which at 21_{0} C has a rate constant of 3x 104S-1. If the enthalpies of activation for the uncatalyzed and catalyzed reactions are 134kJmol-1 and 43.9 kJmol-1, respectively, calculate the temperature at which the nonenzymatic hydrolysis of urea would proceed at the same rate as the enzymatic hydrolysis at 21_{0} C.

3. a)What is the probability of locating a particle in a one dimensional box between a/4 and 3a/4, where 'a' is the length of the box. Assume the particle to be in the lowest level.

b) Explain in terms of their electron configurations, why $Fe_{2+}is$ more easily oxidized to Fe_{3+} than Mn_{2+} to Mn_{3+} .

- 4. Construct the character table for water molecule of C_{2v} point group.
- 5. Sketch the COSY(1H-1H) NMR spectrum of nicotinic acid(pyridine-3-carboxylic acid).
- 6. to 12.

* * *