

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING

(Deemed to be University)

Syllabus for B.Sc.(Hons) in Computer Science Batch 2019 -2020 onwards

Vidyagiri, PRASANTHI NILAYAM – 515 134,

Anantapur District, Andhra Pradesh, India

Ph: (08555) 287239, Fax: 286919

Website: www.sssihl.edu.in Email: registrar@sssihl.edu.in

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING

(Deemed to be University)

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

Syllabus for Three Year B.Sc. (Hons.) in

Three Year Undergraduate B.Sc. Honours in CS Programme

(Effective from 2019 batch)

The B.Sc. Honours in Computer Science is a well-structured 3 year undergraduate programme in accordance with the UGC regulations.

The qualification required for the admission is successful completion of 12th standard **from any stream** with Mathematics as one of the core subjects at 10+2 level and any board satisfying minimum marks prescribed in the Regulations.

The syllabi for the programme have been prepared keeping in view the following:

- The knowledge level of the students being admitted to the programme: Students with varying background and from various boards are admitted. Uniformity of students from various subjects and boards are taken into account. This has to be done keeping in view the prerequisites of B.Sc. courses.
- 2) Students after completing this programme may join some post graduate programmes in the field of computer science, like M.Sc. Data Science and Computing.

Care has been taken that the students are prepared well enough to take the follow up courses at the post B.Sc. level.

In order to achieve the above objectives, the programme consists of courses from many domains of knowledge in the area of core and advanced computing and in general divided into the following categories:

 The language courses are introduced to train the students in the skill set of writing and speaking coherently and convincingly on a given topic. These skills are absolutely essential these days in the work environment. These courses are given in the first four semesters.

- 2) Courses such as Awareness and Environment are novel courses that help the student to relate to their cultural roots on one hand and understand the present scenario in the society with all its complexities and composition.
- 3) Computer Architecture: Courses like "Fundamentals of Computer Organization", "Digital Circuits and Logic Design" train the students in learning the fundamentals of Computer Architecture.
- 4) System Software: Courses like "Operating Systems", and "System Software" impart knowledge in the internals of system software.
- 5) Theoretical Computer Science: Courses like "Introduction to Programming Languages", "Data Structures and Algorithm Analysis" lay down the foundations required and the skills needed to develop algorithms and to perform the analysis.
- 6) Web and Computer Networks: Courses like "Network Essentials", "Web programming" provide the internals behind the working of computer networks and the World Wide Web.
- 7) Mathematics: Courses like Foundations in Algebra, Geometry and Calculus, Ordinary differential equations, Probability and Statistics, Linear Algebra, Statistical Inference, Data Mining and Discrete Mathematics lay the mathematical and statistical foundation for learning computer science.
- 8) Databases: Courses like "Database Management Systems" and "SQL Programming" provide the knowledge of database theory and Practicals.
- Technology: Electives like "Internet of Things", "Cyber-Physical Systems", "Problem Solving with Artificial Intelligence" empower the student to embrace latest technologies.
- 10)Programming Skills: Students are also given sufficient training in programming languages like C, C++, Java, SQL and Python.
- 11)There is a software project in the 6th semester. The aim of the project is to expose the students to the real world situation. The student is expected to present the work to an internal committee in the form of project viva-voce. A separate grade of the project is shown in the grade card.
- 12)The examination system has got 2 components:
 - a. Continuous Internal Evaluation(CIE)
 - b. End Semester Examination(ESE)

CIE for each subject consists of quizzes, assignments or oral tests. These tests are conducted at regular intervals during the semester. These help the student keep abreast with the pace of the course and to reinforce learning. The variety of tests enables both the students and the teachers to evaluate the learning outcomes and performance in various forms of expression. Each component of CIE has its own role and importance in the overall evaluation.

ESE on each subject is conducted once at the end of the semester which is comprehensive in its nature covering the entire syllabus of the course.

In addition to the above mentioned examinations, there is a course component called seminar in the 3rd and 4th semesters and a comprehensive Viva voce in the 6th semester.

The Seminar is intended to widen the scope of learning beyond the confines of the syllabus. In the Seminar, students are expected to present (written as well as oral) new topics, new inventions, and articles from magazines and research journals related to advanced topics in computing. These presentations are evaluated and their grades are shown separately in the grade card.

The aim of the comprehensive viva-voce is to examine the student's understanding and assimilation of the theoretical content of the courses that the student has undergone in the programme up to that point. The examination is restricted to core courses and practicals. A group of teachers of the department jointly conduct and evaluate this examination. A separate grade for this examination is shown in the grade card.

* * *

Program Objective:

The main objective of the course is to train the candidate on various fundamental areas of both mathematics and computer science and encourage to take up advanced study or research in these fields.

Program Outcome:

The course structure and syllabus provides a strong foundation in the fundamental and advanced areas of Computer science so that the candidate is ready to take up any post graduate programs in the field of computer science, like M.Sc. Computer Science, Data Science.

Syllabus Structure for the Three Year

B.Sc. Honors in Computer Science

(From 2019-20 batch)

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

The B.Sc.(Hons) in Computer Science Programme Structure consists of Three Parts.

PART-I: LANGUAGES#

(a) General English (four papers offered, one each in the first four semesters)
(b) Another Language (four papers offered, one each in the first four semesters – Any one out of: HINDI / SANSKRIT / TELUGU / ADDITIONAL ENGLISH)

PART-II: CORE SUBJECTS

(Offered in all the six semesters) – Title of the papers are given below in the Scheme of Instruction & Evaluation and the syllabus contents are enclosed.

PART-III: AWARENESS COURSE and ENVIRONMENTAL COURSE

a) Awareness Courses – (UAWR) (six papers offered, one each in all the six semesters)
b) Environmental Courses – (UENT) (two papers offered, one each in the first two semesters)

NOTE: The title of the papers and the syllabus contents of Part-I and Part-III are provided separately.

Paper Code	Title of the Paper	Credits	Period s	Modes of Evaluatio n	Types of Papers	Maximum Marks
Semester I						
UGEN- 101	General English-I #	5	5	IE1	Т	100
	Another Language-I #	4	4	IE1	Т	100
UCSH- 101	Foundations in Algebra and Geometry	3	3	IE1	Т	100
UCSH- 102	Digital Circuits and Logic Design	3	3	IE1	Т	100
UCSH- 103	Introduction to Programming Languages	3	3	IE1	Т	100
UCSH-	C-Programming Lab-I	3	6	l	Р	100

104						
UAWR- 100	Awareness Course-I: Sai Education for Transformation (Based on Life and Teachings of Bhagawan Baba)	2	2	I	Т	50
UENT- 101	Environment-I ##	2	2	I	Т	75
		25 credits	28 hours			725 Marks

Paper Code	Title of the Paper	Credits	Period s	Modes of Evaluatio n	Types of Papers	Maximum Marks
Semester I	I					
UGEN- 201	General English-II #	5	5	IE1	Т	100
	Another Language-II #	4	4	IE1	Т	100
UCSH- 201	Foundations in Calculus	3	3	IE1	Т	100
UCSH- 202	Fundamentals of Computer Organization	3	3	IE1	Т	100
UCSH- 203	Data Structures and Algorithm Analysis in C	3	3	IE1	Т	100
UCSH- 204	C-Programming Lab-II	3	6	I	Р	100
UAWR- 200	Awareness Course-II: Unity of Religions	2	2	I	Т	50
UENT- 201	Environment-II ##	2	2	I	Т	75
		25 credits	28 hours			725 Marks

Paper Code	Title of the Paper	Credits	Period s	Modes of Evaluatio n	Types of Paper s	Maximum Marks
Semester I						
UGEN- 301	General English-III #	5	5	IE1	Т	100
	Another Language-III #	4	4	IE1	Т	100
UCSH- 301	Ordinary Differential Equations	3	3	IE1	Т	100
UCSH- 302	Probability and Statistics	4	4	IE1	Т	100
UCSH- 303	Object Oriented Programming	3	3	IE1	Т	100
UCSH- 304	C++ Programming Lab	3	6	I	Ρ	100
UCSH- 305	Seminar-I	1	1	I	-	50
UAWR- 300	Awareness Course-III: Study of Classics – I: Ramakatha Rasa Vahini	2	2	I	Т	50
		25 credits	28 hours			700 Marks

Paper Code	Title of the Paper	Credits	Period s	Modes of Evaluatio n	Types of Papers	Maximum Marks
Semester I	V					
UGEN- 401	General English-IV #	5	5	IE1	Т	100
	Another Language-IV #	4	4	IE1	Т	100
UCSH- 401	Linear Algebra	3	3	IE1	Т	100
UCSH- 402	Statistical Inference	4	4	IE1	Т	100
UCSH- 403	Operating System	3	3	IE1	Т	100
UCSH- 404	Java Programming Lab	3	6	I	Р	100
UCSH- 405	Seminar-II	1	1	I	-	50
UAWR-	Awareness Course-IV:	2	2	l	Т	50

Study of Classics – II: Bhagawatha Vahini		
25 credits	28 bours	700 Marks
	credits	credits hours

Paper Code	Title of the Paper	Credits	Periods	Modes of Evaluatio n	Types of Paper s	Maximum Marks
Semester V						
UCSH- 501	Computer Oriented Numerical Analysis	4	4	IE1	Т	100
UCSH- 502	Data Mining	4	4	IE1	Т	100
UCSH- 503	Network Essentials	3	3	IE1	Т	100
UCSH- 504	Database Management System	3	3	IE1	Т	100
UCSH- 505	Software Engineering	3	3	IE1	Т	100
UCSH- 506	SQL and Python Lab	3	6	I	Ρ	100
UCSH- 507	Web Programming Lab	3	6	I	Р	100
UAWR- 500	Awareness Course-V: Eternal Values for the changing World	2	2	Ι	Т	50
		25 credits	31 hour s			750 Marks

Paper Code	Title of the Paper	Credits	Period s	Modes of Evaluatio n	Types of Papers	Maximum Marks
Semester V	I					
UCSH-601	Elective - I	3	3	IE1	Т	100
UCSH-602	Elective - II	3	3	IE1	Т	100
UCSH-603	Introduction to High Performance Computing	3	3	IE1	Т	100
UCSH-604	High Performance Computing Lab	3	6	I	Р	100
UCSH-605	Advanced Java Lab	3	6	I	Р	100
UCSH-606	Software Project	6	9	I	Р	200
UCSH-607	Comprehensive Viva- voce	2	-	E1	COV	50
UAWR- 600	Awareness Course-VI: Life and its Quest	2	2	I	Т	50
		25 credits	32 hours			800 Marks
	GRAND TOTAL	150 credits	175 period s			4400 marks

Modes of Evaluation

Indicator	Legend
IE1	CIE and ESE ; ESE single
IE2	evaluation CIE and ESE ; ESE double evaluation
I	Continuous Internal Evaluation (CIE) only Note: 'I' does not connote 'Internal Examiner'
E	End Semester Examination (ESE) only Note: 'E' does not connote 'External Examiner'
E1	ESE single evaluation
E2	ESE double evaluation

Types of Papers

Indicator	Legend
Т	Theory
Р	Practical
V	Viva voce
PW	Project
	Work
D	Dissertation

Continuous Internal Evaluation (CIE) & End Semester Examination (ESE)

PS: Please refer to guidelines for 'Modes of Evaluation for various types of papers', and 'Viva voce nomenclature & scope and constitution of the Viva voce Boards'.

The software project is for 6 Credits and evaluated for 200 Marks. Evaluation of the project is Internal by the project committee appointed by the HoD. The Evaluation method is given below:

- 1. Evaluation will be done in THREE parts.
- 2. First Evaluation is within the first FIVE weeks of the semester for 20% of total Marks. The student is to submit a short written report and face an oral examination by the project committee.
- 3. Second Evaluation component is spread across the semester. The project supervisor will evaluate the progress of the candidate in the project work on a weekly basis. This component is for 30% of total Marks.
- 4. Third Evaluation is at the end of the semester for 50% of total Marks. The student is to submit a project report and make an oral presentation. Following which there will be an oral examination by the project committee.
- 5. **Project Committee:** A student doing project must have a *project supervisor* allotted by the HoD. Project supervisor and another member of the Department nominated by the HoD constitute the Project Committee.

List of Electives

- ELEC1 Graph Theory
- **ELEC2 Discrete Mathematics**
- ELEC3 Internet of Things
- ELEC4 Problem Solving with Artificial Intelligence
- ELEC5 System Software
- ELEC6 Information Retrieval
- ELEC7 Cyber-Physical Systems
- **ELEC8** Microprocessor
- ELEC9 Embedded Computing

UCSH-101: Foundations in Algebra and Geometry; Credits:3

Course Objectives:

This course will introduce students to the fundamental concepts of Algebra and Geometry. It is the foundation course, which is essential to understand future courses like Linear Algebra, and Probability & Statistics. The Geometry part of this course is useful to visualize certain geometric objects during this programme in different courses.

Course Outcome:

Develop the skill set to

- convert real life problems into a linear system of equations wherever applicable
- solve the linear system of equations using different strategies
- perform basic operations like addition, multiplication and inverse on matrices
- sketch the graph of the basic functions in mathematics
- perform basic operations on vectors like addition, product (scalar/cross) and triple product
- visualize certain abstract ideas into understandable content using geometry

Unit	Торіс	Contents	Period
			S
1	Linear System	Gaussian Elimination, Gauss–Jordan Method, Row	9
		Echelon Form, Reduced Row Echelon Form,	
		Consistency of Linear Systems, Homogeneous Systems,	
		Non-homogeneous Systems	
2	Matrix Algebra	Addition, Transposition, Multiplication, Properties of	9
		Matrix Multiplication, Matrix Inversion, Elementary	
		Matrices and Equivalence, LU Factorization	
3	Coordinate	Coordinates, R ⁿ , Line through Two Points, Plane	5
	Geometry	Containing Three Points, Distance and Angle, Polar	
		Coordinates, Area, Hyperplanes	
4	Solid Geometry	Points and Coordinates, Scalar Product, Cross Product,	8
		Scalar Triple Product, Vector Triple Product, Planes,	
		Lines in Space, Isometries of Space, Projections	
5	Conics	Conic Sections, Conic as Quadratic Curve, Focal	8
		Properties	
		Total	39

References:

1. Matrix Analysis and Applied Linear Algebra by Carl D. Meyer, SIAM Publications.

Chapters: 1 (except 1.4 and 1.6), 2, 3 (except 3.8)

2. Geometry by Roger Fenn, Springer undergraduate mathematics series, 1st Edition, 2003. Chapters: 2, 5 (except 5.10), 7 (till 7.3)

Course Objectives: To understand the basic principles and techniques for designing combinational sequential circuits Course Outcome: Obtain the skill set to • Design a combinational circuits viz., adders, subtractors, encoders, deco multiplexers demultiplexers, code converters. • Design Sequential Circuits viz., counters and registers Unit Topic	
sequential circuits Course Outcome: Obtain the skill set to • Design a combinational circuits viz., adders, subtractors, encoders, decomultiplexers demultiplexers, code converters. • Design Sequential Circuits viz., counters and registers Unit Topic	oders,
Course Outcome: Obtain the skill set to • Design a combinational circuits viz., adders, subtractors, encoders, decomultiplexers demultiplexers, code converters. • Design Sequential Circuits viz., counters and registers Unit Topic	
 Obtain the skill set to Design a combinational circuits viz., adders, subtractors, encoders, deco multiplexers demultiplexers, code converters. Design Sequential Circuits viz., counters and registers Unit Topic Contents 	
 Design a combinational circuits viz., adders, subtractors, encoders, decomultiplexers demultiplexers, code converters. Design Sequential Circuits viz., counters and registers Unit Topic Contents 	
multiplexers demultiplexers, code converters. • Design Sequential Circuits viz., counters and registers Unit Topic Contents	
Design Sequential Circuits viz., counters and registers Unit Topic Contents	Pariode
Unit Topic Contents	Periode
	Parinde
	i enous
 Boolean Basics Laws of Boolean Algebra, Logic Gates, Algebra Simplifications of Boolean equations using K-maps, Code Conversion, (Binary, Octal, Hexadecimal), Overview of Gray codes and Excess – 3 codes. 	10
2 Arithmetic Adder, Subtractor, Parallel binary adder/Subtractor, binary Circuits multiplier and divider, Combinational Circuits Multiplexers, De-Multiplexers, decoders, encoders, Design of code converters.	10
Flip-Flops S-R, D, J-K, T, Clocked Flip-flop, Race around condition, Master slave Flip-Flop, Realisation of one flip-flop using other flip-flop. Shift Registers, Serial -in-serial -out, serial - in-parallel -out, parallel -in-serial -out and parallel -in- parallel -out, Bi-directional shift register.	10
4 Counters Ripple counter, Synchronous Counter, Modulo Counters, Ring Counter, and Twisted Ring Counter. Memory Devices - RAM, ROM, PAL & PLA	10
Total	40
Reference: Malvino Leach, "Digital Principles and Application", TMH, 1999	
Chapters: 1 (1.1-1.7), 2(2.1-2.4), 3 (3.1-3.8), 4 (4.1-4.12), 5 (5.7 and 5.8), 8 (8.1-9 (9.1-9.6), 10 (10.1-10.4)	·8.8, 8.10),
Suggested Readings:	
1. R.L.Tokheim, "Digital Electronics, Principles and Applications", Tata McGraw 2. W.Gothman, "Digital electronics", PHI.	Hill, 1999.

- 3. S. Salivahanan & S. Arivyhgan. "Digital circuits and design", Vikas Publication, 2001
- 4. Moris Mano, "Digital Logic and Computer Design", PHI Publications, 2002
- 5. R. P. Jain, "Modern Digital Electronics", TMH, 3rd Edition, 2003

UCSH-103: Introduction to Programming Languages; Credits:3

Course Objectives:

This course is designed to introduce students to algorithmic thinking. It introduces the fundamental structures in algorithm design and how to apply these structures in order to develop algorithms to solve specific problems.

Course Outcome:

Develop the skill set to

- think in the algorithmic way to solve certain simple computational problems
- choose the appropriate control structures necessary to solve specific problems
- formulate simple algorithms for arithmetic and logical problems
- test and execute the programs and correct syntax and logical errors
- implement conditional branching, iteration and recursion
- decompose a problem into functions and synthesize a complete program using divide and conquer approach
- use arrays and a few structures to formulate algorithms

Uni	Торіс	Contents	Period
t			s
1	Algorithms	Format – Syntax – Methodology and Language of	5
		Algorithms – Data – Data Types – Primitive Operations	
		- Variable Expressions	
2	Decision	If-Then-Else - Nested If's - Different Type Of Loop	6
	Structures	Structures - Compound Conditions - Case Statement.	
3	Sub Algorithms	Functions Procedures- Argument- Parameter	6
		Correspondence- Recursive Sub Algorithms.	
4	Composite Data	Vectors (One Dimensional Arrays) - Sorting and	6
	Structures	Searching of Vectors - Higher Dimensional Arrays –	
		Structures - Arrays of Structures - Introduction to	
		Sequential Files.	
5	String	Character – Information - String Concepts - Operations	6
	Manipulation	on Strings.	
6	Linear Data	Linear List - Pointers - Sequential Storage Structures	6
	Structures	For Arrays - Stacks – Queues	
7	Application of		5
	Above Topics		
		Total	40
Refe	rence: Introduction	n to Computer Science, An Algorithmic Approach, Jean-P	aul
Trem	blay And Richard	B. Bunt, McGraw Hill, Second International Edition, (1981).
Chap	oters: Ch. 1 to Ch.6	6, Ch. 8 (sec 8.1 to 8.6), Appendix A	

UCSH-104: C Programming Lab-I; Credits:3

Course Objectives:

This lab course introduces the basics of the C language to students. It would enable a student to implement algorithms for simple problems as programs in C thereby improving algorithmic thinking.

Course Outcome:

Develop the skill set to

- formulate the algorithms as C programs for simple problems
- choose simple data types and programming constructs to develop a C program
- translate given algorithms to a working and correct program
- ability to correct syntax errors as reported by the compiler
- ability to identify and correct logical errors encountered at run time
- ability to write iterative as well as recursive programs
- ability to represent data in arrays and simple structures

Jnit	Торіс	Contents	Periods
1	If-else, for & while	Basic programs for learning syntax, Maximum of n	20
	loops	numbers, Number raised to a power, Factorial, Printing	
		different patterns of '*' based triangles, Reversing a	
		number.	
2	Recursion	Power, Factorial, GCD, Fibonacci numbers, Sum upto N,	18
		Reversing a number using recursion	
3	Arrays	Linear Search, Binary Search, Selection Sort, Merge	20
	-	Sort, Removing duplicates, Reversing an array, Matrix	
		addition & Multiplication	
4	Strings	Length of a string, String comparison, Palindrome check,	20
		Case changing, Find a pattern, Replace a pattern	
		Total	78
Refe	rences:		1
1. Co	mputer Science - A	Structured Programming Approach using C by Behrouz Fo	rouzan &

Richard Gilberg, ISBN-13: 978-0534491321, ISBN-10: 9780534491321, 2005.

2. The C Programming Language by Dennis Ritchie, Prentice Hall India Learning Private Limited; 2 edition (1990)

UCSH-201: Foundations in Calculus; Credits:3

Course Objectives:

Calculus provides the tools and methods for analyzing and solving problems of change and motion quantitatively. It introduces mathematical operations of differentiation and integration and develops concepts of central importance in mathematical sciences.

Course Outcome:

Develop the skill set to

- compute the slope of tangent at a point for given curve
- write a differentiable function into a series
- find the maxima and minima of function in both one and two variables
- compute the area under the curve for a given surface
- perform different operators on vectors like gradient, divergence and curl
- compute the volume of a given solid

compute the volume of a given solid			
Торіс	Contents	Periods	
Prerequisites	Sets, Real valued functions, Graphs of functions,	4	
Differential Calculus	Successive differentiation, Leibnitz Theorem, Taylor's theorem with Lagrange's forms of remainders, Expansion of a function of one variable in Taylors and McLaren's infinite series. Maxima and Minima of one variable, Partial Derivatives, Euler's theorem, change of variables, total differentiation, Errors and approximation. Taylor's series in two variables. Maxima and Minima of two or more variables, Jacobians and	13	
Integral Calculus	Definite integral and its application for area, length and volume. Multiple integrals. Change of order of Integration. Transformation of integral from Cartesian to polar. Applications in areas, volume	13	
Vector Calculus	Differentiation of vectors, Curves in space, Vector operator del, Gradient, Divergence and Curl. Integration of vectors: Line integral, Surface integral, Green's theorem in the plane, Stoke's theorem. Volume integral. Divergence theorem, Green's theorem.	9	
	Total	39	
Reference: Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna Publishers, 44 th Edition Chapters: 4 (4.1 – 4.4, 4.14-4.15), 5 (5.1 – 5.11), 6 (6.8 – 6.13), 7 (7.1 – 7.8), 8 (8.1 –			
	Topic Prerequisites Differential Calculus Integral Calculus Vector Calculus Vector Calculus	Topic Contents Prerequisites Sets, Real valued functions, Graphs of functions, Limits, Continuous and differentiable functions. Differential Calculus Successive differentiation, Leibnitz Theorem, Taylor's theorem with Lagrange's forms of remainders, Expansion of a function of one variable in Taylors and McLaren's infinite series. Maxima and Minima of one variable, Partial Derivatives, Euler's theorem, change of variables, total differentiation, Errors and approximation. Taylor's series in two variables. Maxima and Minima of two or more variables, Jacobians and properties. Integral Calculus Definite integral and its application for area, length and volume. Multiple integrals. Change of order of Integration. Transformation of integral from Cartesian to polar. Applications in areas, volume and surfaces. Vector Calculus Differentiation of vectors, Curves in space, Vector operator del, Gradient, Divergence and Curl. Integral, Green's theorem in the plane, Stoke's theorem. Volume integral. Divergence theorem, Green's theorem. Total rence: Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna Publ Edition	

8.17)

UCSH-202: Fundamentals of Computer Organization; Credits:3

Course Objectives:

This course introduces students to the fundamental concepts of computing system. This is to familiarize students to equip with understanding of hardware design including logic design, basic structure and behavior of the essential functional modules of the computer. It also gives them how system interacts to accomplish required processing for the needs of the user.

Course Outcome:

Develop the skill set to:

- To know basics of Instruction Set Architecture (ISA) and organization of Computer components.
- Solve simple boolean algebra problems as related to designing computer logic, through combinational and sequential logic circuits.
- Understand how computers represent and manipulate data and convert between different number systems.

Unit	Topic	Contents	Period
			S
1	Introduction to	Boolean algebra, Gates and combinatorial logic, Sequential	10
	Digital	Logic circuits	
	Computer		
	Logic		
2	Data	Number systems – Physical Representation, Different	10
	Representation	Bases, Arithmetic in different bases, Numeric conversion	
		between number bases, Hexadecimal numbers. Data	
		Formats – Introduction, Alphanumeric character data.	
		Representing Numerical data – Unsigned binary and	
		binary-coded decimals, Signed integers, Real numbers.	
3	Overview of	Little Man computer – Layout, Operation, Programs,	10
	Instruction set	Instruction set, Instruction cycle. CPU & Memory –	
	design and	Components, Registers, Memory unit, Fetch-execute	
	memory	instruction cycle, Buses, Classification of instructions,	
	operations	Instruction word formats, Instruction word requirements and	
		constraints. CPU & Memory design enhancement and	
		implementation – CPU architectures, CPU Features and	
		enhancements, memory enhancements. Instruction	
		addressing modes – Register addressing, Immediate	
		addressing, Indirect addressing, Register Indirect	
		addressing, Indexed addressing, Indirect indexed	
		addressing.	
4	Input/Output	Characteristics of typical I/O devices, Programmed I/O,	10
		Interrupts – Servicing, Uses, Multiple interrupts &	

		Prioritization, Direct Memory access, I/O Modules	
		Total	40
Refe	ence: The Archit	ecture of Computer Hardware and Systems Software: An Info	rmation

Technology approach, Fourth Edition, Irv Englander, Publisher Wiley, 2009.

Chapters: Ch 3 (3.0-3.6), Ch 4 (4.0-4.2), Ch 5 (5.0-5.3), Ch 6, Ch 7, Ch 8 (8.0-8.3), Ch 9, 10(10.1,10.2) Supplementary chapter 1 and 3.

UCSH-203: Data Structures and Algorithm Analysis in C; Credits:3 Course Objectives: This course is designed to introduce the process of designing data structures to solve

fairly complex problems. It imparts the following.

- basic concepts of data structures and algorithms
- searching and sorting techniques
- basic concepts about stacks, queues, lists, trees and graphs
- enable students to write algorithms for solving problems with the help of fundamental data structures

Course Outcome:

Develop the skill set to

- choose the appropriate data structure for solving a specific problem
- choose an efficient algorithm based on space or time complexity
- ability to analyze the algorithms to determine the time and computation complexity
- Implement different search techniques
- Implement different sorting techniques
- Solve multiple problems using Stacks, Queues, linked lists, trees and graphs
- Implement and analyze the solution to determine the time and computation complexity

Complexity			
Unit	Topic	Contents	Period
			S
1	Algorithm	Complexity of Algorithm-Space Complexity and Time	8
	Analysis	Complexity, Mathematical background – Model – What	
		to Analyze	
2	Lists, stacks	Abstract Data Types (ADT's) – The List ADT – The	8
	and Queues	Queue ADT – The Stack ADT	
3	Trees	Preliminaries – Binary Trees-ADT of Binary Tree, – The	8
		Search Tree ADT – Binary Search Trees – AVL Tree	
4	Sorting	Preliminaries – Bubble Sort- Insertion Sort – Shell Sort –	8
		Merge Sort – Quick Sort.	
5	Graph	Definitions – ADT for Weighted Graph and Unweighted	8
	Algorithms	Graph, Topological Sort – Minimal Spanning Tree	
	•	Total	40

Reference: Data Structures and Algorithm Analysis in C, Mark Allen Weiss, second edition, Pearson Education (Singapore) Pvt. Ltd., Indian branch, 482 F. I. E. Patparganj, Delhi 110 092, India(1997)

Chapters: Chap 2 (2.1 to 2.3), chap 3, chap 4 (4.1.1, 4.1.2, 4.2.1, 4.2.2, 4.3.1 to 4.3.5, 4.4.1, 4.4.2), chap 7 (7.1, 7.2.1, 7.4 (only the algorithm; 7.4.1 is excluded), 7.6 (only the algorithm; 7.6.1 is excluded), 7.7.1, 7.7.2, 7.7.3, 7.7.4), chap 9 (9.1.1, 9.2, 9.5.1, 9.5.2). Another sorting algorithm namely Selection sort should be briefed to the students.

UCSH-204: C Programming Lab- II; Credits:3

Course Objectives:

This lab course introduces the basics of data structures using C language. It would enable a student to design & implement data structures in C to solve fairly complex problems thereby improving data structure design skills.

Course Outcome:

Develop the skill set to

- Program basic data structures in C.
- use complex data structures like Linked Lists, Trees and Graphs appropriately to solve problems
- implement different searching and sorting techniques

-	· Implement amerent obtaiening and oerting teening dee		
Unit	Init Topic Contents		Periods
1	Pointers	Simple programs for learning C Pointer Concepts	8
2	Linked Lists	Creation, Insertion, Deletion, Applications	15
3	3 Trees General Tree, binary Tree, Binary Search Tree, AVL		25
		Trees, Applications of trees	
4	Stacks, Queues	Stack using Linked List and arrays, Queues using Linked	15
		List and arrays	
5	Graphs	Adjacency matrix based graph, Adjacency list based	15
		graph, Topological sort	
		Total	78

References:

1. Computer Science - A Structured Programming Approach using C by Behrouz Forouzan & Richard Gilberg.

2. The C Programming Language by Dennis Ritchie

3. Pointers in C by Yashwant Kanetkar

UCSH–301: Ordinary Differential Equations; Credits:3

Course Objectives:

The course in Ordinary Differential Equations is an excellent vehicle for displaying the interrelations between mathematics, engineering, physics, biology, economic and social sciences. The interest in differential equations may be both theoretical and applied mathematics. More precisely, the objectives of this course are:

- understand all of the concepts relating to the order and linearity of ODEs, analytic and computational solution methods for ODEs, and the real-world applications of ODEs
- apply your understanding of the concepts, formulas, and problem solving procedures to thoroughly investigate relevant physical models

Course Outcome:

Obtain the skill set to

- formulate problems from engineering, physics, biology and economics into differential equations and solve them by using different techniques
- solve first order differential equations utilizing the standard techniques for separable, exact, linear, homogeneous, or Bernoulli cases
- find particular solutions when given initial or boundary conditions
- solve higher order linear differential equations using reduction of order, undetermined coefficients, or variation of parameters
- compute the power series solution about an ordinary point and singular point

Uni t	Торіс	Contents	Periods
1	Differential Equations and Their Solutions	Classification, Types of Solutions, Initial Value Problem and Boundary Value Problem, Existence and Uniqueness of Solution for an Initial Value Problem	7
2	Solutions for First Order Equations	Variable Separable Equation, Linear Equation and Bernoulli Equation, Exact Differential Equation, Integrating Factors, Transformations	10
3	Exact Solutions for Higher Order Linear Equations	Homogeneous Equation with Constant Coefficients, Method Of Undetermined Coefficients, Method of Variation Of Parameters, Cauchy-Euler Equation, Wronskian - Basic Theorems	10
4	Series Solutions For Second Order Linear Equations	Power Series Solutions about an Ordinary Point, Solutions about a Singular Point, Frobenius Method, Bessel's Equation Of Order Zero	12
		Total	39
and	erence: Introduction to (Sons Pub (1989), 4 th Eo oters: 1, 2, 4, 6	Ordinary Differential Equations, Shepley L Ross, Joh dn	n Wiley

		2: Probability and Statistics; Credits:4	
	se Objectives:		
Probampo elecanath node statis	ability theory is the bra rtant because of its dir ommunications. It also ematical sciences incl elling. This course pro stics. se Outcome: elop the skill set to solve real world prob	anch of mathematics that deals with modelling uncertated application in areas such as genetics, finance and of forms the fundamental basis for many other areas in uding statistics, modern optimization methods and risk viding students with a formal treatment of probability applems by using conditional probability and Bayes' theostributions by observing real data sets	the k and
•	-	probabilistic model for non-deterministic events	
Jnit		Contents	Periods
	Fundamentals	Sets, operations on sets, venn diagrams, Permutations and Combinations, Describing and Summarizing Data Sets, Chebyshev's Inequality, Normal Data Sets, Correlation	8
2	Elements of Probability	Sample Space, Events, Algebra of Events, Axioms of Probability, Conditional Probability and Bayes' Formula	7
3	Random Variables and Expectation	Random Variables, Types of Random Variables, Jointly Distributed Random Variables, Independent Random Variables, Conditional Distributions, Expectation and its properties, Variance, Covariance, Moment Generating Functions, Chebyshev's Inequality	12
4	Special Random Variables	Bernoulli, Binomial and Poisson Random Variables, Hypergeometric, Uniform, Normal, Exponential Random Variables and Gamma Distributions	10
5	Distributions arising from the Normal	The chi-square distribution, the t-distribution, the F-distribution	6
6	Sampling Distributions	Random sample, Statistics, population mean, population variance, sample Mean, central limit theorem, Sample Variance, distributions of the sample mean, joint distribution of sample mean and sample variance, sampling from a finite population	9
		Total	52
⁺ Two Refe	o hours to be allocated rence: Introduction to	ovided to students for implementing lab exercises. I in the time table for the same. Probability and Statistics for Engineers and Scientists Academic Press, 4 th Edition.	

Sneidon M Ross, Elsevier Academic Press, 4th Edition. Chapters: 1, 2, 3, 4 , 5, 6.

Suggested Readings: John E. Freund's Mathematical Statistics with Applications, Irwin Miller Marylees Miller, Eighth Edition, Pearson Publications

	UCSH-303:	Object Oriented Programming; Credits:3	
Cour	se Objectives:		
To u	nderstand and impl	ement standard tools and techniques for software	
deve	lopment using obje	ct oriented approach.	
Cour	se Outcome:		
Deve	elop the skill set to		
•		gn real world problems using OOPS concepts viz:	
	•	pject identity, inheritance and polymorphism.	
•	•	es and write generic programming programs using basic object oriented paradigms	
∎ Uni	Topic	Contents	Period
t	Topic	Contents	S
1	Introduction	Introducing Object-Oriented Approach, complexity	3 10
1		of the structure and design of complex systems,	10
		Relating to other paradigms (functional, data	
		decomposition). Basic terms and ideas: Abstraction,	
		Encapsulation, Inheritance, Polymorphism, Review	
		of C, Difference between C and C++ - cin, cout,	
		new, delete operators.	
2	Classes and	Encapsulation, information hiding, abstract data	10
~	Objects	types, Object & classes, attributes, methods, C++	10
	00,0013	class declaration, State identity and behavior of an	
		object, Constructors and destructors, instantiation of	
		objects, Default parameter value, object types,	
		dynamic memory allocation, Metaclass/abstract	
		classes.	
3	Inheritance and	Inheritance, Class hierarchy, derivation – public,	10
-	Polymorphism	private & protected, Aggregation, composition	-
		versus classification hierarchies, Polymorphism,	
		Categorization of polymorphism techniques, Method	
		polymorphism, Polymorphism by parameter,	
		Operator overloading, Parametric polymorphism	
4	Generic function	Template function, function name overloading,	10
		Overriding inheritance methods, Run time	
		polymorphism, Multiple Inheritance. Files and	
		Exception Handling: Persistent objects, Streams	

	and files, Namespaces, Exception handling, Generic Classes	

Total 40

Reference: A.R.Venugopal, Rajkumar, T. Ravishanker "Mastering C++", TMH, 1997. Chapters: 1(1.1.-1.18), 2,3,4,5,6,,9,10,11,12,,13,14,15, 16(16.1-16.3), 17(17.1-17.2),

18 (18.1-18.9), 19 (19.1-19.7)

Suggested Readings:

 R. Lafore, "Object Oriented Programming using C++", Galgotia Publications, 2004.
 James Rumbaugh "Object Oriented Modeling and Design" Prentice Hall Publications, 1991

3. D. Parasons, "Object Oriented Programming with C++", BPB Publication.

4. Steven C. Lawlor, "The Art of Programming Computer Science with C++", Vikas Publication.

5. Schildt Herbert, "C++: The Complete Reference", 4th Ed., Tata McGraw Hill, 1999.

6. Tony Gaddis, Watters, Muganda, "Object -Oriented Programming in C++", 3rd Ed., Wiley Dreamtech, 2004

7. Grady Booch Object oriented Analysis and Design with applications

8. S. B. Lippman & J. Lajoie, "C++ Primer", 3rd Edition, Addison Wesley, 2000.

	UCSH-304: C++	Programming Lab; Credits:3	
	rse Objectives:		
		and code using object oriented concepts of C-	++.
	r se Outcome: elop the skill set to		
Deve	•	nt object oriented paradigms viz., Encapsulatic	'n
•	object identity, inheritance	, , ,	/11,
•	Develop a mini project.		
Uni	Торіс	Contents	Period
t			S
1	Classes and Objects	To set and get the values given by the user,	20
		calculate the area/perimeter of geometrical	
		shapes, Using friend functions. Static	
		members and functions to count the number	
		of objects created. Using constructors	
		(default, parameterized, overloaded) defined	
		in (local, global and function) and destructors	
		along with their order of invocation in addition	
		/ multiplication of complex numbers (passing	
		objects as parameters)by using inline	
		functions. matrix multiplication using	
		dynamic objects.	
2	Inheritance:	To write sample codes with different access	10
	Single,Multiple,Hierarchic	specifiers, visibility modes and various types	
	al, Multilevel,Hybrid.	of inheritance, To use constructors and	
		destructors in all the types of inheritance to	
		understand the order of invocation.	
3	Polymorphism,	Operator overloading on: arithmetic, logical,	20
	Templates,Exception	assignment, relational, unary, subscripting,	
	handling,	new and delete operators, using abstract	
	Namespaces, Files	classes with virtual functions. Developing	
		sample codes for swapping, maximizing two	
		numbers using templates. Handling division	
		by zero exception, creating own	
		namespace. To read and write into a file.	
4	Mini project	Student academic/ non-academic activities,	28
		Banking systems/ Self-reliance	
		departments/ etc., using all the concepts.	
		Total	78
Refe	rence: A.R. Venugopal, Ra	jkumar, T. Ravishanker "Mastering C++", TMH	, 1997.
1. Sc	childt Herbert, "C++: The Co	mplete Reference", 4th Ed., Tata McGraw Hill,	1999.
		• • • • •	

	UCSH-401: Linear Algebra; Credits:3						
Cour	se Objectives:						
This course provides an introduction to Linear algebra and its applications to other							
discip	disciplines.						
Course Outcome:							
Deve	lop the skill set to						
•	identify problems t	hat can be converted into a linear system of equations					
•	apply techniques to	o convert the identified problems into a linear system					
٠		nsion of a vector space					
•	•	ant subspaces of a vector space for a given linear					
	transformation						
•	•	normal basis from given basis					
٠		les and eigenvectors of a given square matrix					
٠		stem using efficient techniques	_				
Uni	Торіс	Contents	Periods				
t							
1	Vector Spaces	Spaces and Subspaces, Four Fundamental	11				
		Subspaces, Linear Independence, Basis and					
		Dimension, Rank, Linear Transformations, Change					
	Niewse, Janey	of Basis and Similarity, Invariant Subspaces	14				
2	Norms, Inner	Vector Norms, Matrix Norms, Inner-Product	14				
	Products, and	Spaces, Orthogonal Vectors, Gram–Schmidt					
	Orthogonality	Procedure, Unitary and Orthogonal Matrices, Complementary Subspaces, Range-Null space					
		Decomposition					
3	Eigenvalues and	Determinants, Properties of Determinants,	14				
5	Eigenvectors	Elementary Properties of Eigen systems,	14				
		Diagonalization by Similarity Transformations,					
		Normal Matrices, Positive Definite Matrices					
	1	Total	39				
Dafe	rence:						

Matrix Analysis and Applied Linear Algebra by Carl D. Meyer, SIAM Publications. Chapters: 4 (except 4.6), 5 (5.1 - 5.6, 5.9, 5.10), 6, 7 (7.1 – 7.2, 7.5 – 7.6)

	UCSH – 402: Statistical Inference*; Credits:4				
	Course Objec	tives:			
	The main purpose of Statistical Inference is to make an inference about a population based on information contained in a random sample selected from tha population, and to provide an associated measure of goodness for the inference. Another purpose is hypothesis testing for mean and variance.				
	Course Outcomes:				
	Develop the skill set to				
	 identify the nature of a population from a sample model the relationship between a scalar response and one or more explanatory variables 				
	 represei 	nt and statistically analyze data both graphically and numeri	cally		
		appropriate regression model for a given data	1		
Uni t	Торіс	Contents	Periods		
1	Parameter Estimation	Point Estimates, Maximum Likelihood Estimators, confidence intervals for mean and variance, Estimating the Difference in Means of Two Normal Populations, Confidence Interval of the Mean of the Exponential Distribution	10		
2	Hypothesis Testing	Significance Levels, Hypothesis testing: For the Mean of a Normal Population, For the Equality of Means of Two Normal Populations, For the Variance of a Normal Population, For the Mean of a Poisson Distribution	10		
3	Regression	Linear regression equation, least squares estimators, distribution of the estimators, statistical inferences about the regression parameters: regression to the mean, prediction interval of a future response, coefficient of determination, the sample correlation coefficient, analysis of residuals, transforming to linearity, weighted least squares, polynomial regression	12		
4	Analysis of Variance	One-way , Two-way ANOVA	10		
5	Goodness of Fit Tests	Goodness of Fit Tests: When all Parameters are Specified and when Some Parameters are Unspecified, Tests of Independence.	10		
		Total	52		
* Rea * Two	al life data sets	ations to be used for demonstrations in class. to be provided to students for implementing lab exercises. located in the time table for the same.	I		
Intro Elsev Chap	duction to Proba vier Academic F	ability and Statistics for Engineers and Scientists, Sheldon M Press, 4 th Edition. 7.4), 8, 9 (up to 9.9), 10, 11 (up to 11.5). gs:	I Ross,		

John E. Freund's Mathematical Statistics with Applications, Irwin Miller Marylees Miller, Eighth Edition, Pearson Publications

	UCSH-403: Operating System; Credits:3				
Cour	se Objective				
To gi	ve basic idea	of an OS and its functionalities. To give an in- depth understan	nding of		
CPŪ	and its sched	duling, memory management, and device management. This co	ourse		
cover	rs other functi	ionalities of OS such as file systems, virtual memory, disk requ	est		
schee	duling, concu	rrent processes, deadlocks, security, and integrity.			
Cour	se Outcome	:			
Deve	lop the skill s	et to			
•		familiar with the working of the general operating system.			
•	• •	spectives to understand the OS services.			
•		e working of the operating system processes, memory subsyst	em and		
	file system.				
Unit	Topics	Contents			
	Periods	1			
1	Introductio	What is an Operating System, Simple Batch Systems, Multi-	5		
	n	programmed Batches systems, Time-Sharing Systems,			
		Personal -computer systems, Parallel systems, Distributed			
		Systems, Real -Time Systems, Computing Environments,			
		Computer System operation, I/O Structure, Storage			
		structure and Hierarchy, Operating System components			
		and Services- System calls, System Programs, System			
		Structure			
2	Processes	Process Concept, Process Scheduling, Operation on	9		
		Processes CPU Scheduling: Basic Concepts, Scheduling			
		Criteria, Scheduling Algorithms, Multiple-Processor			
		Scheduling, Process Synchronization: Background, The			
		Critical -Section Problem, Synchronization Hardware,			
3	Deadlocks	Semaphores, Classical Problems of Synchronization System Model, Deadlock Characterization, Methods for	5		
5		Handling Deadlocks, Deadlock Prevention, Deadlock	5		
		Avoidance, Deadlock Detection, Recovery from Deadlock.			
4	Memory	Background, Logical versus Physical Address space,	10		
r	Manageme	swapping, Contiguous allocation, Paging, Segmentation,	10		
	nt	Virtual Memory: Demand Paging, Page Replacement,			
		Page-replacement Algorithms, Performance of Demand			
		Paging, Allocation of Frames, Thrashing, Other			
		Considerations.			
5	Storage	File system Implementation, Directory Implementation,	11		
	Manageme	Allocation methods, free space management, Disk			
	nt	Structure, Disk Scheduling, Disk Management, Swap-			
		Space Management, Disk Reliability			

Total	40		
Reference: Silberschatz and Galvin, "Operating System Concepts", Wiley-India	,		
nternational Student Version, 8th Ed., 2010			
Chapters:			
Text 1: 1, 3 (3.1, 3.2, 3.3), 5 (5.1, 5.2,5.3, 5.5), 6 (6.1, 6.2, 6.4, 6.5,			
6.6), 7, 8 (8.1, 8.2, 8.3, 8.4, 8.6), 9 (9.2,9.4,9.5,9.6,9.9), 11(11.2-11.5), 12(12.2,12.4-			
12.6).			

		04: Java Programming Lab; Credits:3	
	se Objectives:		
		basics of Java programming.	
	se Outcome:		
Deve	lop the skill set to		
•	Write java code for		
•		plement object oriented concepts like Abstraction, Encap	sulatio
	and Inheritance		
•		data structures like List, Tree and Graph	
•	Understand related	concepts in Java like Exceptions, Packages	
Jnit	Торіс	Contents	Period
			S
1	Primitives and	Simple programs for learning primitive data types and	10
	Objects in Java	basics of creating, using objects in java	
2	Loops and Control	Simple programs using if-else, for, while, switch-case,	8
	structures	break, continue	
3	Access modifiers	Private, default, protected and public access modifiers	15
	and Constructors	for fields and methods. Default Constructor,	
		Constructor invocations, static, abstract, final	
4	Inheritance	Object class, super, Multi-level inheritance,	15
		Typecasting, Constructors in Inheritance, Fields and	
		Methods in Inheritance, Overriding, Final & Abstract	
		classes	
5	Arrays, Exceptions,	1D and 2D arrays in Java, Inheritance in Arrays,	15
	Packages,	Checked and Unchecked Exceptions, try, catch,	
	Interfaces	throw, finally, Different ways to import packages,	
		Class path, Inheritance in Packages, Using interfaces	
		for multiple inheritance	
6	Data Structures	List, Tree, Graph	15
		Total	78
₹efei	rences:		•
. Th	e Java Programming	Language by James Gosling	

2. Thinking in Java by Bruce Eckel

UCSH – 501: Computer Oriented Numerical Analysis* Credits:4

Course Objectives:

This course introduces numerical methods to solve several mathematical problems and an analysis of different methods.

Course Outcome:

Develop the skill set to

- identify and apply the numerical methods to solve a mathematical problem
- analyze and choose the best method to solve the mathematical problem efficiently
- familiar with numerical integration and differentiation, numerical solution of ordinary differential equations

Uni ŀ	Торіс	Contents	Periods
1	Taylor Polynomial	Taylor Polynomial - Remainder Term - Methods of Polynomial Evaluation	4
2	Error and Floating Point Arithmetic	Floating Point Representation of Numbers - Floating Point Arithmetic - Errors - Propagation of Error	8
3	Roots of Algebraic Equations	Bisection Method - Newton Method - Secant Method - Fixed Point Method - III-Behaved Root finding Problems - Stability of Roots	8
4	Polynomial Interpolation	Linear and Quadratic Lagrangian Interpolation Formulas - Divided Differences - Newton's Divided Difference Interpolation Formula - Error in Polynomial Interpolation - Spline Interpolation using Linear, Quadratic and Cubic Splines	10
5	Integration And Differentiation	Trapezoidal Rules - Simpson Rules - Error Formulas - Gaussian Integration - Differentiation by Interpolation - Differentiation by the Method of Undetermined Coefficients - Effects of Error in Function Values	11
6	Ordinary Differential Equations	Solvability and Stability of Initial Value Problems of Ordinary Linear First Order Differential Equation - Euler's Method - Convergence Analysis of Euler's Method - Taylor Method - Runge-Kutta Methods	11
		Total	52

* Numerical methods to be implemented in the lab course available in the same semester

Reference:

Elementary Numerical Analysis, Kendall Atkinson & Weimin Han, Wiley India, 3rd Edition: Chapters: 1, 2, 3, 4, 5, 8

Suggested Readings:

Intro. Methods of Numerical Analysis. S.S.Sastry, 5th edition, PHI, LTD, India.

UCSH – 502: Data Mining* Credits: 4				
Cours	se Objectives:			
	ourse introduces differe	ent strategies to draw useful information from any give	n data	
et.				
	se Outcome:			
evel	op the skill set to			
•		assify data based on different parameters		
•		ve useful information from it	Deriede	
<u>Jnit</u>	Торіс	Contents	Periods	
1	Introduction	Motivating Challenges, The Origins of Data Mining, Data Mining Tasks, Data Attributes and Measurement, Types of Data Sets, Measurement and Data Collection Issues, Data Preprocessing: Aggregation, Sampling, Dimensionality Reduction	4	
2	Basic techniques for Classification	Basic techniques for Classification, Decision Trees, Model Overfitting, Evaluating the Performance of a Classifier, Holdout Method, Random Subsampling, Cross-Validation, Bootstrap.	10	
3	Advanced Techniques for Classification	Rule-Based Classifier, Nearest-Neighbor classifiers, Bayesian Classifiers, Artificial Neural Network(ANN), Support Vector Machine (SVM), Ensemble Methods: Bias-Variance Decomposition, Bagging, Boosting, The Receiver Operating Characteristic Curve, Class Imbalance problem.	12	
4	Association Analysis	Basic Concepts and Algorithms Frequent Item set Generation-The Apriori Principle, Rule Generation in Apriori Algorithm, Alternative Methods for Generating Frequent Item sets: FP-Growth Algorithm	14	
5	Cluster Analysis	The Basic K-means Algorithm, Agglomerative Hierarchical Clustering, The DBSCAN Algorithm, Strengths and Weaknesses of DBSCAN.	12	
		Total	52	
Real	l life data sets to be pro	vided to students for implementing lab exercises.		

^r Real life data sets to be provided to students for implementing lab exercises. ^r Two hours to be allocated in the time table for the same.

References: Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson Publishers, 2007, [Chap. 1,2,4:4.1-4.5,5:5.1-5.6, 6:6.1-6.6, 8:8.1-8.4].

Suggested Readings:

1. Data Mining: Concepts and Techniques by Jiawei Han, Micheline Kamber, Morgan Kaufmann pub, 2001

2. Data Mining: Practical Machine Learning Tools and Techniques by Ian H. Witten, Eibe Frank, Mark A. Hall, Morgan Kaufmann pub, 2011, 3rd Ed.

	UCSH-5	03: Network Essentials; Credits:3	
Cour	se Objective:		
•	and performance involved in wide-a Wireless LANs (W	portunity to do network programming To provide a WL	ncepts id
Cour	se Outcome : dev		
•	Explain the function Draw the function networks (LANs) a block. For a given requir	ons of the different layers of the OSI Protocol. al block diagram of wide-area networks (WANs), loca and Wireless LANs (WLANs) describe the function of rement (small scale) of wide-area networks (WANs), loca ANs) and Wireless LANs (WLANs) design it based on	each ocal
•	For a given proble programming. Configure DNS D HTTP, SNMP, Blu	em related TCP/IP protocol developed the network DNS, TELNET, EMAIL, File Transfer Protocol (FTP), uetooth, Firewalls using open source available softwar	
• • Uni	For a given proble programming. Configure DNS D	em related TCP/IP protocol developed the network DNS, TELNET, EMAIL, File Transfer Protocol (FTP),	
• Uni t	For a given proble programming. Configure DNS D HTTP, SNMP, Blu tools.	em related TCP/IP protocol developed the network DNS, TELNET, EMAIL, File Transfer Protocol (FTP), uetooth, Firewalls using open source available softwar Contents	re and
• Uni	For a given proble programming. Configure DNS D HTTP, SNMP, Blu tools.	em related TCP/IP protocol developed the network DNS, TELNET, EMAIL, File Transfer Protocol (FTP), uetooth, Firewalls using open source available softwar	re and Period
• Uni t	For a given proble programming. Configure DNS D HTTP, SNMP, Blu tools.	em related TCP/IP protocol developed the network DNS, TELNET, EMAIL, File Transfer Protocol (FTP), uetooth, Firewalls using open source available softwar Contents Network edge, Network core, ISPs and Internet, Protocol Layers and service models, OSI, TCP/IP	re and Period s
• Uni t 1	For a given proble programming. Configure DNS D HTTP, SNMP, Blu tools. Topic Introduction	em related TCP/IP protocol developed the network DNS, TELNET, EMAIL, File Transfer Protocol (FTP), uetooth, Firewalls using open source available softwar Contents Network edge, Network core, ISPs and Internet, Protocol Layers and service models, OSI, TCP/IP reference models	re and Period s 4
• Uni t 1	For a given proble programming. Configure DNS D HTTP, SNMP, Blu tools. Topic Introduction	em related TCP/IP protocol developed the network DNS, TELNET, EMAIL, File Transfer Protocol (FTP), uetooth, Firewalls using open source available softwar Contents Network edge, Network core, ISPs and Internet, Protocol Layers and service models, OSI, TCP/IP reference models Principles, Web and HTTP, FTP, SMTP, DNS. Services, Multiplexing and demultiplexing, principles of reliable data transfer, connection oriented transport, TCP, Connectionless support	re and Period S 4 8

Total 40

Reference: A Top Down Approach Featuring the Internet , by Jim Kurose, Keith Ross, 3rd Ed, Pearson Education 2004

Chapters: 1, 2.1 - 2.5, 3, 4.1 - 4.7, 5.1 - 5.6, 6.1 - 6.7.

Suggested Readings:

1. Data And Computer Communications, by William Stallings, VII edition, Pearson Education, 2005.

2. Computer Networks by Andrew S. Tanenbaum, IV Ed, Pearson Education 2003

3. Forouzan B A: Data communication and Networking.

UCSH-504: Database Management System; Credits:3

Course Objectives:

To understand different issues involved in the design and implementation of database systems.

Course Outcome:

Develop skill set to

- Draw ER diagrams for a given problem
- Design relational database with normalization
- Handle concurrency control and storage requirements of a database

Uni	Торіс	Contents	Period
t			S
1	Introduction	Characteristics of database approach, Purpose of Database Systems-Drawbacks of file System, data models, DBMS architecture and data independence. E-R Modeling: Entity types, entity set, attribute and key, relationships, relation types, roles and structural constraints, weak entities, enhanced E-R and object modeling, Sub Classes:, Super classes, inheritance, specialization and generalization	10
2	File Organization	Indexed sequential access files, implementation using B++ trees, hashing, hashing functions, collision resolution, extendible hashing, dynamic hashing approach	10

		implementation and performance.	
3	Relational	Relational model concepts, relational constraints,	10
	Data Model	relational algebra. SQL: SQL queries, programming using	
		SQL EER and ER to relational Mapping: Data base design	
		using EER to relational language, The Unified Modelling	
		language UML-features of Good Relational Design.	
4	Data	Functional dependencies, Normal form up to 3rd normal	10
	Normalizatio	form. Concurrency Control: Transaction processing,	
	n	locking techniques and associated, database recovery,	
		security and authorization. Recovery Techniques,	
		Database Security	
		Total	40
Refe	rence: R. Elma	asri and SB Navathe, "Fundamentals of Database Systems",	Addison
Wesl	ey, 4 th Ed., 200)4	
Chap	oters: 1.1, 1.2, 7	1.3, 2.1, 2.2, 3.3, 3.4, 3.5, 4.1, 4.2, 5.1, 5.2, 6.2, 7.1, 8.4, 9.1,	10.2,
10.3,	10.4, 13.8, 14	3, 18.1, 18.2, 19.1, 23.1	
Suga	ested Readin	qs:	

Suggested Readings:

1. Abraham Silberschatz, Henry Korth, S. Sudarshan, "Database Systems Concepts", 4th Edition, McGraw Hill, 1997.

2. Jim Melton, Alan Simon, "Understanding the new SQL: A complete Guide", Morgan Kaufmann Publishers, 1993.

3. A. K. Majumdar, P. Battacharya, "Data Base Management Systems', TMH, 1996.

4. Bipin Desai, "An Introduction to database Systems", Galgotia Publications, 1991.

	UCS	H-505 : Software Engineering; Credits:3	
Cour	se Objectives:		
This of	course introduce	s students to the general approach of building a software p	roduct.
It also introduces the various methods of building software products. It also covers the			
OO approach of software design and other phases.			
Cour	se Outcome:		
Develop skill set to			
 Design a software model for a software product 			
 Estimate the cost of planning and implementing a software product 			
 Calculate the software metrics at different phases of development 			
Uni	Торіс	Contents	Period
t			s
1	Introduction	The Problem Domain, S/W Engineering Challenges, S/W	2
		Engineering Approach,	

2	Software	Software Process, Desired Characteristics, Development	3
	Processes	Process Models, Other Software Processes	
3	Requirement	Software Requirements Analysis and Specification:	5
	Analysis	Software Requirements, Problem Analysis, Requirements	
		Specification, Functional Specification with Use Cases,	
		Validation, and Metrics.	
4	Planning a	Planning Process, Effort Estimation, Project Scheduling	5
	software	and Staffing, Software Configuration Management Plan,	
	project	Quality Plan, Risk Management, Project Monitoring Plan.	
5	Function	Design Principles, Module Level Concepts, Design	5
	oriented	Notation and Specification, Structured Design	
	design	Methodology, Verification, Metrics.	
6	Object	OO Analysis and Design, OO Concepts, Design	5
	oriented	Concepts, UML, Design Methodology, Metrics.	
	design		
7	Detailed	Detailed Design, PDL, Verification, Metrics	5
	design		
8	Coding	Programming Principles and Guidelines, Coding Process,	5
		Refactoring, Verification, Metrics.	
9	Testing	Testing fundamentals, Black-box Testing, White-box	5
		Testing, Testing Process, Defect Analysis and Prevention.	
		Total	40
		grated Approach To Software Engineering by Pankaj Jal	ote, 3rd
		shing House, New Delhi, 2005	
		2.4, 3.1-3.6, 5.1-5.7, 6.1-6.6, 7.1-7.6, 8.1-8.3, 9.1-9.5,10.1-1	0.5
	gested Reading		
Roge	er. S. Pressman	, "Software Engineering - A Practitioner's approach", 7th	Edition,

MGH higher Education

UCSH-506 SQL and Python Lab	Credits:3
Course Objectives:	
It introduces to basic query writing using SQL and MYSQL v	workbench
Introduce students the basics of Python programming langu	lage
Course Outcome:	
Develop skill set to	
Write simple DDL statements using MySQL and MyS	SQL Workbench
 Write simple DML statements MySQL and MySQL W 	/orkbench
Mrite Python code for various applications	

- ۲
- Write Python code for various applications Identify and use various libraries of Python. •

Jnit	Торіс	Contents	Periods
	Syntax, Variables, Data Type, Operators, If elif else, For, while Loops	Basic programs for learning syntax, counting series of numbers, Interactive programs to calculate factorial, fibonacci series, printing various structures like triangle, squares, rhombus etc.	10
	Strings, Lists , Tuples, Dictionaries, Sets	Learning different features of strings and data structures lists which resembles arrays of C. Counting the number of vowels in given paragraph, Writing comprehensions for mathematical equations, Operation on these data structures.	15
	Modules and Classes	How to write modules in python, writing various customized modules for the purpose of reuse. Factorial module, Person module, Calendar module etc. Also introducing the concept of object oriented programming using classes, inheritance, encapsulation, polymorphism.	15
	SQL DDL (data Definition language)	Working on MYSQL command prompt as well as MYSQL workbench : To Create, insert ,delete, drop, alter, set, rename, operations on the databases (at least 6 tables from the databases mentioned) using with keys viz., primary, foreign and basic data types viz., varchar, int, float, date, time etc.	19
	SQL DML (Data manipulation languages)	MYSQL command prompt as well as MYSQL workbench :Using Select, from, where for single as well as multiples tables, Using Aliases, distinct,*,Union, minus and intersect operations, Nested queries, Exists function, use of NULL, Using aggregate functions viz, max, min and avg.	19
		Python + SQL	78
1.	O'Reilly Publication Dive into Python k https://www.w3res MYSQL reference	w to think like a Computer Scientist by Allen Downey, 2nd editions: (<u>http://www.greenteapress.com/thinkpython/thinkpython.html</u> by Mark Pilgrim. (http://www.diveintopython.net/) source.com/python/python-tutorial.php e manual 5.7. .mysql.com/docs/workbench-en.pdf	
2	https://downloada		

Course Objectives: This course introduces various methods of developing web applications

Course Outcome:

Develop the skill set to

- create web pages using HTML code;
 create web applications for client/server communication
- create web server applications using database connectivity.

Unit	Торіс	Contents	Periods
1	HTML	HTML pages using all tags; Tables and Forms	12
2	CSS	Box model; various styling options	6

3	Java Scripts	script basics; functions; objects; control statements; event handling; DOM; event handling; AJAX	24
4	Servlets	NETbeans IDs; Servlet creation; request/response methods; session management; database connectivity	18
5	JSP	creating server pages with different tags; database connectivity; MVC model	18
	1	Total	78

- Web Technologies Theory and Practice M Srinivasan Pearson, 2012
 Web resources

UCSH-603: Introduction to High Performance Computing;

Course Objectives:

The main objective is to introduce different frameworks of parallel and distributed computing. It introduces the key concepts of high performance computing in an easy-paced manner. Initially the basic ideas in multi-core computer architectures are explored through simple programming.

Course Outcomes:

To develop the skill set to :

- Familiarize with current parallel architectures,
- Design parallel algorithms to exploit inherent parallelism.
- Understand various principles of parallel algorithm design, communication operations in the network of systems.

Unit	Торіс	Contents	Periods
1	Introduction	Motivating Parallelism, Scope of Parallel Computing	3
2	Parallel Programming Platforms	Implicit Parallelism: Trends in Microprocessor Architectures, Limitations of Memory System Performance, Dichotomy of Parallel Computing Platforms, Physical Organizations, and Communication cost in Parallel Machines, Routing Mechanisms for Interconnection Networks, Impact of Process-Processor Mapping and Mapping Techniques.	12
3	Principles of Parallel Algorithm Design	Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models.	10
4	Basic Communication Operations	One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of Some	7

		Communication Operations	
5	· · ·	Dense Matrix Algorithms - Matrix-Vector Multiplication, Matrix-Matrix Multiplication, Sorting- Issues in Sorting on Parallel Computers, Sorting Networks Bubble Sort and its Variants, Quicksort Algorithm	8
		Total	40

Reference: Introduction to Parallel Computing, Second Edition, Addison Wesley Publisher, 2003 by Ananth Grama, Anshul Gupta George karypis, Vipin Kumar

Chapters: 1, 2, 3, 4, 8 (8.1,8.2), 9 (9.1,9.2, 9.3, 9.4)

Suggested Readings:

- 1. G. Hager and Gerhard Wellein, Introduction to High Performance Computing for Scientists and Engineers, CRC Press, 2010. ISBN 9781439811924.
- 2. V. Eijkhout, Edmond Chow, Robert van de Geijn, Introduction to High Performance ScientificComputing, 2016, available online at https://bitbucket.org/VictorEijkhout/hpcbook-and-course

	UCSH-604 ;	High Performance Computing Lab ; Credits:3	
Cou	rse Objectives:		
This	lab course introduc	es hands on experience on high performance computing	
envi	ronment.		
Cou	rse Outcome:		
To d	levelop skill set to:		
	 Profiling of seque spots and identify given sequential Learning Basics of 	of coding practices ential programs to identify the performance bottleneck ring the probable spots where parallelism is possible in the code. of OpenMP, shared memory programming of MPI, distributed memory programming.	
	Торіс	Contents	Periods
1	Profiling and Analysing the sequential Programs	Identify the performance bottleneck spots of sequential code using profiling tools like gprof and analysing the result. Learning profiling of the given code using various different programs	18
2	OpenMP Programming	Hello world program, OpenMP shared memory programs to parallelize the code and speed up for the enhancement of the performance, example problems: Parallelizing Breadth first search, depth first search, binary search, sorting algorithms like quick sort merge sort, etc.	30
3	MPI programming	Hello world program using mpi commands, broadcasting programs, point to point communication programs like alltoall, one to all etc., matrix multiplications program	30
		Total	78
Refe	Parallel Co 2. <u>https://com</u>	George Karypis, Vipin Kumar and Anshul Gupta. Introductic mputing, Pearson 2003 puting.llnl.gov/tutorials/mpi/exercise.html puting.llnl.gov/tutorials/parallel_comp/	on to

	UCS	H-605; Advanced Java Lab; Credits:3	
Cour	se Objectives:		
This d	course introduces to	o MVC frameworks viz STRUTS2 ,Spring	
Cour	se Outcome:	· •	
Deve	lop the skills set to		
•	Develop simple St	ruts2/Spring application	
•	Design a MVC ap	olication for a given problem	
Unit	Торіс	Contents	Periods
1	Basics in JSP and	Installation of Tomcat and working with Eclipse, Running	25
	Servlets	sample servlet and jsp program, introduction to MVC	
		application using servlets and jsp using redirect and	
		request dispatcher methods.	
	Struts2 Framework	Installation and framework set up. Simple struts2 application(jar files needed) with clients, strut.xml and action classes, Writing own action classes ,business services and tag, Post method, Value stack and its application	25
	Developing solution for a mini project	Restaurant problem/ Library book issue problem / hostel purchase problem etc	28
		Total	78
Refer	rences: Struts2.x fro	om www.tutorialpoint.com	

ELECTIVES

		ELEC-1: Graph Theory; Credits: 3	
	Course Objectives	:	
	This course is aime	d to cover a variety of different problems in Graph Theo	ory. In this
	course students wil	come across a number of theorems and proofs. Theor	rems will be
	stated and proved f	ormally using various techniques. Various graphs algor	ithms will
	also be taught along	g with its analysis.	
	Course Outcome:	Develop the skill set to	
	Model and set	olve real-world problems using graphs and trees, both	
	quantitatively	<i>i</i> and qualitatively.	
		sic concepts of mathematical logic	
	 describe and 	I solve some real time problems using concepts of grap	h theory
Unit	Торіс	Contents	Periods
1	Introduction	Graphs and Graph model, Connected graphs, Multi	4
		graphs and Digraphs	
2	Degree	Degree of a vertex, Regular graph, Degree	5
		sequence	
3	Isomorphism of	Definition of isomorphism, Isomorphism as a	4
	graphs	relation	
4	Trees	Bridges, Trees, Minimal Spanning trees	6
5	Connectivity	Cut-vertices, Blocks, Connectivity	6
6	Traversability	Eulerian graph, Hamiltonian graph	5
7	Planarity	Planar graph, Embedding planar graphs on surface	5
8	Coloring	Color Problem, Vertex Coloring	5
		Total	40
Key T	Text:		
		ory (reprint) Gary Chartrand, Ping Zhang, Tata McGraw	/ Hill
Chapt	ters: 1 to 6, 9, 10.		

	1	ELEC2: Discrete Mathematics; Credits: 3		
	Course Objectiv	/es:		
	It emphasizes the	e conceptual understanding, quantitative reasoning, and		
	contemporary ap	plications by maintaining a dynamic balance among theo	ry,	
	applications, modeling, and drill. Students work to develop a deeper understanding a range of mathematical topics using interactive math tutorials that allow the student			
	to solve math pro	blems interactively. Students will gain some confidence of	on how to	
	deal with problem	ns which may arrive in computer science in near future.		
	Course Outcom	e:		
	Develop the skill	set to		
	 write and 	interpret mathematical notation and mathematical definition	ons	
	 improve th 	ne proof writing skills		
	describe a	and solve some real time problems using concepts of grap	oh theory	
Unit	Торіс	Contents	Periods	
1	Logic	Proposition – Logic Operators – Conditional	8	
		Statements – Methods of Proof –Mathematical		
		Induction, Introduction to Predicates and Quantifiers,		
2	Relations and	Product set – Partition – Relation – Digraph – Path –	8	
	Digraphs	Equivalence relation – Transitive closure – Warshal's		
		algorithms, The Pigeonhole principle,		
3	Functions and	Functions from computer science – Growth of	8	
	Groups	functions – Permutation functions – Group: Basic		
		concepts of groups, and Semi groups.		
4	Order Relations	Partially ordered set – External element – Lattice –	8	
	and Structure	Finite Boolean algebra – Functions of Boolean		
		algebra.		
5	Graphs and	Graphs – Euler paths and circuits – Hamiltonian path	8	
	Trees	and circuits –-Shortest Path problems, Tree – Labeled	-	
		trees – Tree Searching – Undirected trees – Minimal		
		Spanning trees.		
	1	Total	40	
Κον Τ	axt Kolman Rus	by. Ross: Discrete Mathematical Structures. Pearson edu	_	

Key Text: Kolman, Busby, Ross: Discrete Mathematical Structures, Pearson education, 4th Edition.

Chapters: 2, 3.3, 3.5, 4 to 9 [proofs for Prim's and Kruskal's algorithms not included].

Reference Books:

1. Trembly J.P and Manohar R: Discrete Mathematical Structures with applications to Computer Science, TMH Pub. Co. Ltd. 2003.

2. Kenneth H. Roson: Discrete Mathematics and it, Applications", 5th Edition, TMH Pub. Co. Ltd. 2003.

3. T. Veerarajan: Discrete Mathematics, with Graph Theory and Combinations(2008), Tata McGraw – Hill Publishing Company Ltd, New Delhi

4. Discrete Mathematics, Dr A Singaravelu et al, Meenakshi Agency.

	ELEC3: Internet of Things; Credits: 3			
		uce students to the principles of IoT along with designing the	ne basic	
	se Outcome:			
Deve	elop skill set to	ment the basic IoT tools		
•	•	ement the basic IoT tools Pi for creating various applications		
Uni		Contents	Periods	
t				
1	Introduction & Domain Specific IoTs	Physical Design, Logical Design, IoT Enabling Technologies, IoT levels and deployment templates, Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health & Lifestyle	5	
2	M2M and IoT System Management	M2M, Difference between IoT and M2M, SDN & NFV for IoT, Software defined networking, Network Function Virtualization, Need for IoT Systems Management, SNMP, Network Operator Requirements, NETCONF, YANG, IoT Systems Management with NETCONF- YANG	8	
3	IoT Platform Design & IoT Systems Logical Design	IoT Design Methodology, Case study on IoT System for Weather Monitoring, Introduction to Python, Python packages of interest for IoT	7	
4	IoT Physical Devices	Raspberry Pi, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming Raspberry Pi with Python, Other IoT Devices	8	

5	IoT Physical Servers and Cloud Offerings	Cloud storage Models, Communication APIs, WAMP, Xively, Django, Designing a RESTful Web API, Amazon Web Services for IoT, SkyNet IoT Messaging platform	7		
6	Case Studies in IoT Design	Home Automation, Cities, Environment, Agriculture, Productivity Applications	5		
	1	Total	40		
Madi	Reference Text: Internet of Things – A Hands-On Approach by Arshdeep Bahga & Vijay Madisetti, Chapters: 1 – 9				

	ELEC4: F	Problem Solving with Artificial Intelligence; Credits: 3	
Cour	se Objectives:		
This o	course will introdu	uce students to different techniques in solving AI problems.	
Cour	se Outcome:		
Deve	lop skill set to		
•	Understand diff	erent approaches involved in solving AI problem	
•	Analyze differer	nt approaches	
•	Decide the best	t approach based on space and time constraints	
Uni	Торіс	Contents	Periods
t			
1	Problem Solving	Introduction, Traditional Problems, Polya's five steps, Problem Solving Techniques, Human window criteria & ranking of solutions, Classification	3
2	Missionaries & Cannibals	Background, Choosing an appropriate representation, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Related Problems, Playable Program	3
3	The 12 Coins	Background, Solving a smaller problem, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Playable Program	3

4	Cryptarithms	Background, Problem Solving Techniques, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Related Problems, Playable Program	3
5	The Red Donkey Puzzle	Background, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Related Problems, Playable Program	3
6	The 15 Puzzle	Background, Problem Solving Techniques, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Related Problems, Playable Program	3
7	The Knight's Tour	Background, Problem Solving Techniques, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Related Problems, Playable Program	3
8	Mastermind	Background, Problem Solving Techniques, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Related Problems, Playable Program	3
9	The Monty Hall Problem	Background, Problem Solving Techniques, Solution, Human Problem Solving, Related Problems	3
10	Rubik's Cube	Background, Problem Solving Techniques, Solution, Human Problem Solving, Human window analysis of solutions, Best Machine Solution, Playable Program	3
11	The Prisoner's Dilemma	The Traditional Problem, The iterated Prisoner's Dilemma, Applications in Diverse areas, Related Problems	3
12	Sudoku	Background, Mathematical Analysis, Problem Solving Techniques and Strategies, A Real life experiment, Algorithms for Computer Solutions, Human window analysis of solutions	4
13	Cryptography	Background, Symmetric Key Encryption, Public Key Encryption, RSA Encryption, Issues regarding RSA Cryptographic Systems	3

Total	40
Reference Text: Artificial Intelligence and Problem Solving by Dr. Danny Kopec, Christopher Pileggi, Davind Ungar & Shweta Shetty, Mercury Learning and Inform	ation
Chapters: 1 – 13, 15.	

ELEC5: System Software; Credits: 3

Course Objectives:

Objective is to teach students the working of the end to end process of execution of the program. It introduces to system programming, machine architecture, Machine Language, Assembly language. It also introduces to working of the assembler, loader, linker, macro processor in detail. It also gives different perspective to the operating system.

Course Outcomes:

To develop the skill set to:

- Study the architecture of a hypothetical machine, its assembly language, macro language...
- Programming in assembly language.
- Understand the structure and design of assemblers, linkers and loaders.
- Understand the concepts and theory behind the implementation of high level programming languages.

Units		Contents	
Period	S		
1	Introduction	System Software, Machine Structure	2
2	SIC	Simplified Instruction Set Computer – Overview	3
3	Assemblers	Machine Dependent Assembler Features, Machine Independent Assembler Features, Design Options	7
4	Loaders and Linkers	Basic Loader Functions, Machine dependent Loader Features, Design Options	7
5	Macro Processors	Basic Functions, Machine Independent Macro Processor Features, Design Options	6
6	Compilers	Basic Functions, Machine dependent compiler features	8
7	Operating Systems	Basic Functions, Machine dependent Operating System Features, Machine Independent Operating System Features	7
		Total	40

Key Text: Systems Programming by Leland Beck, III Ed, Pearson Education, 1997 Chapters: 1 (1.1-1.3), 2 (2.1-2.4), 3 (3.1-3.4), 4 (4.1-4.3), 5 (5.1-5.3), 6 (6.1-6.3)

References:

1. Dhamdhere, "Systems Programming and operating systems", TMH, 1996.

2. Donovan, "System Programming". (McGraw-Hill), 1991.

ELEC6: Information Retrieval; Credits: 3

Course Objectives:

- The main objective of this course is to present the basic concepts in information retrieval and more advanced techniques of multimodal based information systems.
- This course will introduce students to the concepts of searching methods in Web. Covers various information retrieval methods.
- Provides an insight into various concepts of IR: Word statistics, Vector space model (relevance feedback, query expansion, document normalization, document re-ranking), evaluation of retrieval, generalized VSM, latent semantic indexing, Web retrieval, data fusion, metasearch, multimodal retrieval, applications

Course Outcome:

Develop skill set to

- Implement index construction and compression.
- Implement basic text classifications.
- understand the underlined problems related to IR and acquired the necessary experience to design, and implement real applications using Information Retrieval systems.

	eyeternet		
Unit	Topic	Contents	Perio
			ds
1	Introduction	Boolean retrieval, The term vocabulary and postings lists,	9
		Dictionaries and tolerant retrieval	
2	Indexing	Index construction, Index compression	6
3	Scoring	Scoring, term weighting & the vector space model,	9
		Computing scores in a complete search system	
4	Evaluation	Evaluation in information retrieval, Relevance feedback &	9
	and Query	query expansion	
	Expansion		
5	Classification	Text classification & Naive Bayes, Vector space	7
		classification	
		Total	40
Key 1	F ext: Manning, F	Raghavan and Schutze, Introduction to Information Retrieval, 20	009,
<u> http://</u>	nlp.stanford.edu	/IR-book/information-retrieval-book.html	
Chap	ters: 1 to 9, 13, 7	14	

	ELEC7: Cyber-Physical Systems; Credits: 3				
Cour	se Objectives:				
•	•	troduce students to the core concepts of CPS.			
•	The objective of the	nis course is to develop an exposition of the challenges in			
	implementing a cy	ber-physical system from a computational perspective, bu	t based		
	equally on the prir	nciples of automated control.			
•	The course aims t	o expose the student to real world problems in this domair	n and		
	provide a walk thr	ough the design and validation problems for such systems			
Cour	se Outcome:				
Deve	lop skill set to				
٠	Solve various prol	olems on Diff. Equations.			
٠	Implement basic h	nybrid programs.			
•		rinciples of design and implementation of cyber-physical sy	ystems		
		embedded systems.			
•		on various critical domains, including automotive, avionics,	railways,		
		c energy, power, and industrial automation.	1		
Uni	Торіс	Contents	Periods		
t					
1	Overview of CPS	Introduction, Hybrid vs CPS, Multi-Dynamical Systems,	3		
		How to learn about CPS, Computational Thinking for			
		CPS, Learning Objectives			
2	Differential	Introduction, Differential Equations as models of	5		
	Equations &	Continuous physical processes, Meaning of differential			
	Domains	equations, Examples, Domains of differential equations,			
		Syntax of Continuous programs, Semantics of			
		Continuous programs			
3	Choice & Control	Introduction, Hybrid Programs – Discrete Change,	4		
		Compositions, Decisions, Choices, Tests, Repetitions,			
		Syntax, Semantics, Design			
4	Safety &	CPS Contracts, Logical Formulas for Hybrid Programs,	6		
	Contracts	Differential Dynamic Logic, CPS Contracts in Logic,			
		Identifying requirements of a CPS			
5	Dynamical	Intermediate conditions for CPS, Dynamic Axioms for	5		
	Systems 8	Dynamical Systems, A Proof of a short bouncing ball			
	Systems &	Bynamiour Bystems, 711 foor of a short boaring ban			

6	Truth & Proof	Introduction, Truth & Proof – Sequents, Proofs,	6
		Propositional proof rules, Soundness of proof rules,	
		Proofs with Dynamics, Quantifier Proof Rules, Derived	
		Proof Rules, Sequent proof for the single-hop bouncing	
		ball, Real Arithmetic	
7	Control Loops &	Control Loops, Induction for loops, Proof of a happily	6
	Invariants	repetitive bouncing ball, Splitting post-conditions into	
		separate cases	
8	Events &	Need for Control – Events, Event Detection, Event	5
	Responses	Firing, Event-Triggered Verification, Event-Triggered	
		Control Paradigm, Physics vs Control Distinctions	
	I	Total	40
Refe	rence Text: Logica	I Foundations of Cyber-Physical Systems by Andre Platzer,	1
	nger International Pu		
-		2 (up to 2.8), 3 (up to 3.5), 4 (up to 4.7), 5 (up to 5.5), 6, 7 (u	up to
7.6),	8		

Note: ELEC8 consists of ELEC8T and ELEC8P offered together against a 3 credit elective option.

ELEC8T: Microprocessor Theory: 2 Credits			
Course Ob	jective:		
To introduce	e architecture a	and instruction set of 8085 microprocessor	
Course Out	tcome:		
Develop Ski	II set to		
 Analy 	ze the instruct	ion set 8085 microprocessor.	
	•	bly language programs and analyze them	
 Ident 	ify addressing	modes and pins of 8086 Microprocessor.	
Unit Topi	C	Contents	Periods
1 Over	view of VLSI	Applications of Microprocessors & Embedded	3
techr	nology	systems in daily life	
2 8085		Microprocessor Architecture and its Operations,	3
Micro	processor	Memory, Input/Output, 8085 MPU. Instruction	
Archi	tecture &	Classification, Instruction Format. Overview of	
Micro	computer	Instruction cycle, machine cycle, T-states, op-code	
Syste	em	fetch memory read and memory write; Interrupts;	
3 Instru	uction Set of	Data Transfer (8 Bit, 16 Bit, from memory to µp &	8
8085	μP and	from µp to memory) Instructions, Arithmetic (8 & 16	
Asse	mbly	Bit) Operations, Arithmetic Operation related to	
Lang	uage	Memory, Logic Operations (Including Rotate &	
Prog	ramming-I	Compare), Branch Operations;	
4 Asse	mbly	Counter and Time Delays, Stack, Subroutine,	6
Lang	uage	Conditional Call & Return Instructions; BCD to	
Prog	ramming-II	Binary conversions & arithmetic manipulations	
5 Intel	8086	Pin Description, Operating Mode, Registers,	6
Micro	processor	Interrupts, Addressing modes. Comparison with	
		8085 microprocessor. Overview of other	
		Microprocessors from Intel, Zilog and Motorola;	
		Total	26
Key Text: N	licroprocessor	Architecture, Programming and Applications with 8085	5/8080A –
Ramesh S.	Gaonkar, Wiley	y Eastern Limited.	
Chapters: 2	,3,4, 6,7,8,9		

Reference Books:

1. Fundamentals of Microprocessors and Microcomputers – B.RAM, Dhanpat Rai Pub.

2. The Intel Microprocessors8086/8080, 186/286, 386, 486, Pentium and Pentium Pro processor Architecture, Programming and Interfacing – Barry R. Brey, PHI

3. Understanding of 8085/8086 microprocessor and peripheral ICs- S.K.Sen, New Age International Publishers, 2nd Edition 2010.

hardwa	re.	
Progra	rogra Program Title	
m No.		
1	Transfer of a block of numbers	2
2	Addition of n 8-bit numbers	1
3	 a) Multiplication by repeated addition b) Multiplication by shift and add method 	2
4	Sorting to arrange in ascending order	1
5	Delay routine for a specified time	1
6	16-bit arithmetic (Register pair operations)	1
7	BCD to Binary and Binary to BCD Conversion	2
8	BCD Addition, BCD Subtraction, Multiplication	1
9	Programming with few interface kits like Traffic controller,	2
	Elevator, music synthesizer, LCD displays etc.	
	Total	13

ELEC9: Embedded Computing; Credits: 3			
Cou	rse Objective:		
To ir	troduce the concept	of Embedded systems.	
To m	nake students learn th	ne various programming methods in Embedded syste	ems.
Cou	rse Outcome:		
Deve	elop Skill set to		
•	Learn the embedde	ed platform	
•	Learn embedded p	programming methods.	
Uni	Торіс	Contents	Periods
t			
1	An Overview of Embedded Computing	Introduction to embedded systems; Complex systems and microprocessors, embedded system design process. Design example: Model train controller, Instructions Sets: Preliminaries, ARM Processor	10
2	Embedded Hardware Fundamentals	Programming Input and output, Supervisor mode, exceptions and traps, coprocessors, memory system mechanism, cpu performance	10
3	Embedded Software and Platforms	Basic computing platforms, cpu bus, memory devices and systems, designing with computing platforms	8
4	Program, Design and Analysis Exercises	components for embedded systems, models of programs, assembly, linking and loading, compilation techniques, program level performance analysis, optimization, programs. Validation and testing, system design techniques, design methodologies requirement analysis	12
	I	Total	40
Desi Chap	gn by Wayne Wolf, M oters: 1 (1.11.4), 2 (Components: Principles of Embedded Computing Sy lorgan Kauffman Publishers, 2 nd edition, 2008. 2.12.3), 3(3.13.6), 4 (4.14.5), 5(5.15.7, 5.95.10), 7(7.	
1. Er McG Hill, 2		ystems Programming by Sriram Iyer and Pankaj Gup	ota, Tata

Pub. Co. Ltd, 11th print 2007. [Chaps 15, Appendix G] 3.An Embedded Software Primer, David E. Simon, Pearson Education, 2007. [Chps 510]

4. Programming for Embedded Systems, Dream Software Team, WILEY dreamtech India Ltd.

2005.
