

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING

(Deemed to be University)

Syllabus for M.Sc. (Data Science and Computing)

(Effective from the batch 2020-21 onwards)

Prasanthi Nilayam - 515 134 Anantapur District, Andhra Pradesh, Ph.: 08555 287239; Fax: 286919 Website: <u>www.sssihl.edu.in</u> ; Email: <u>registrar@sssihl.edu.in</u>

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING (Deemed to be University) Syllabus for Two Year M.Sc. in Data Science and Computing

(Effective from the batch 2020-21 onwards)

M.Sc. (Data Science and Computing)

INTRODUCTION

Data Science has grown to be a domain of scientific study due to the deluge of data generated and acquired through various means. Data driven scientific discovery has contributed a lot to the scientific investigation. Important contributions of data acquisition, visualization and analytics with tools from Machine Learning is seen in domains like Business Intelligence, Financial services, Climate Modeling, Weather forecasting, Medical, Chemistry, Bioscience, Onco informatics etc., and the list goes on.

It is felt that there is a need to produce manpower trained in this stream of scientific study and therefore a course is proposed.

For a Data Science graduate to be of use to the society and specific Industry or organization, he/she should be trained and equipped to develop solutions and applications using computing platform(s) of choice. Therefore, it is felt that a programme for training young individuals in the area of Data Science should take care of their readiness to meet this requirement.

This programme is designed specifically for graduates in Computer Science and Computer Applications, having Degrees like B.Sc.(Computer Science), BCA and B.Tech./B.E. in Computer Science.

In order to equip the students to continue with higher studies in academic disciplines for Ph.D., the candidates undergoing the course should also be comfortable to take the National Level qualifying examinations like UGC NET, GATE etc.

The course structure and syllabus provides good foundations and working knowledge in Statistics, Computer Science, Machine Learning, Data Visualization, Big data Analytics, Distributed Systems and Programming Languages R, Python and platforms like Hadoop, SPARK etc.

All the subjects are to be awarded for 4 credits.

For some of the subjects the credits are split between Theory and Practical based on the necessity. For 1 credit of practical 2 periods are allocated.

A few subjects are purely practical as they are intended to improve programming skill of the students in a specific language or platform. Eight periods are allotted for a four credits practical course.

In order to facilitate development of skill in problem solving and to provide exposure to applications of the concepts learnt in a given Theory subject a facility for Tutorial/Practical is

also provided within the curriculum. One or two periods per week is provided for Tutorial/Practical for every subject based on the requirement.

In order to cater to individual needs and preferences, electives courses are provided in the areas of Cloud Computing, Artificial Intelligence, Information Retrieval, Deep Learning, Computer Graphics, Image Processing, Computer Vision, Robotics etc. All electives are of 4 credits. Based on necessity the credits may be split between Theory and Practical.

* * *

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

SCHEME OF INSTRUCTION AND EVALUATION

M.Sc. (Data Science and Computing)

(Effective from 2020-21 batch and onwards)

Paper Code	Title of the Paper Cree	dits Hour	'S	Modes Evaluat		Maximu Marks
Semester I						
MDSC-101	Computational Linear Algebra	4	4	IE2	T	100
MDSC -102	Inferential Statistics	4	4	IE2	Т	100
MDSC -103	Optimization Techniques	4	4	IE2	Т	100
MDSC -104	Computer Organization and Architecture	4	4	IE2	Т	100
MDSC -105	Design and Analysis of Algorithms	4	4	IE2	Т	100
MDSC-106	Software lab in Python	4	8	Ι	Р	100
PAWR-100	Awareness Course – I: Education for Life	1	2	Ι	T	50
		25 credits	30 Hours			650 Marks

Semester II						
MDSC-201	Stochastic Processes	4	4	IE2	Т	100
MDSC-202	Regression Methods	4	4	IE2	Т	100
MDSC-203	Multivariate Statistical Analysis	4	4	IE2	Т	100
MDSC-204	Distributed Systems	4	4	IE2	Т	100
MDSC-205	Software Engineering	4	4	IE2	Т	100
MDSC-206	Software lab in R	4	8	Ι	Р	100
PAWR-200	Awareness Course – II: God, Society and Man	1	2	Ι	Т	50
		25 credits	30 Hours			650 marks

Paper Code	Title of the Paper	Credits	Hours	Modes of Evaluation	Types of Papers	Maximum Marks
Semester III						
MDSC -301	Machine Learning	3	3	IE2	Т	100
MDSC -301 (P)	Practicals: Machine Learning	1	2	Ι	Р	50
MDSC-302	Big Data Analytics	3	3	IE2	Т	100
MDSC-302(P)	Practicals: Big Data Analytics	1	2	Ι	Р	50
MDSC-303	Data Visualization	2	2	IE2	Т	50
MDSC-303(P)	Practicals: Data Visualization	2	4	Ι	Р	50
MDSC-304	Hadoop Programming	2	2	IE2	Т	50
MDSC-304(P)	Practicals: Hadoop Programming	2	4	Ι	Р	50
MDSC-305	Seminar	1	1	Ι		50
MDSC-404	Project Interim Review*			Ι	PW	50*
PAWR-300	Awareness Course –III: Guidelines for Morality	1	2	I	Т	50
		18 credits	25 hours			600 marks

		credits	hours			marks
		24	32**			600**
PAWR-400	Awareness Course –IV: Wisdom for Life	1	2	Ι	Т	50
MDSC-405	Comprehensive Viva voce	1		E1	V	50
MDSC-404	Project*	10	18	E2	PW	200*
MDSC-403	Elective - III	4	4**	IE2	Т	100**
MDSC-402	Elective - II	4	4**	IE2	Т	100**
MDSC -401	Elective - I	4	4**	IE2	Т	100**

Notes:

- 1. (*) Project work MDSC-404 will commence in 3rd semester and continue to 4th semester with the allocation of 50 Marks in third semester and 150 marks in the fourth semester towards the project work.
- 2. (*) For students undertaking project (MDSC-404), the evaluation will be based on three components, viz.
 - a. A preliminary review of an interim report in respect of the project work at the end of 3rd semester will be conducted for 50 marks and the marks allocated will be carried forward to 4th semester MDSC-404 for overall grading.

- b. A project Viva voce by a committee constituted by the Head of the Department as per regulations will be conducted for 50 marks in the 4th semester.
- c. An E2 type evaluation of the project report at the end of 4^{th} semester will be for 100 marks.
- 3. (*) Total marks for the project will be 200 marks against total credits of 10 accounted in 4^{th} semester.
- 4. A number of electives have been identified and listed. These courses are identified with a special code. All these subjects are also allocated 4 credits each.
- 5. (**) Elective courses may have the credits split between Theory and Practical based on the chosen treatment of the subject and its requirement. Accordingly, the number of periods allocated for the subject (Th. + Prac.) will vary. That will influence the total number of hours allocated for the subject and the total marks for the semester too.
- 6. The choice of electives being offered in each semester is at the discretion of the Head of the Department.

Indicator	Legend		Indicator	Legend
	0		Т	Theory
IE1	CIE and ESE ; ESE single evaluation		Р	Practical
IE2	CIE and ESE ; ESE double evaluation		V	Viva voce
I	Continuous Internal Evaluation (CIE) only Note: 'I' does not connote 'Internal Examiner'		PW	Project Work Dissertation
Е	End Semester Examination (ESE) only Note: 'E' does not connote 'External Examiner'		D	Dissertation
E1	ESE single evaluation			
E2	ESE double evaluation			
Continuous	s Internal Evaluation (CIE) & End Semester Examination	n (ESE)		

PS: Please refer to guidelines for 'Modes of Evaluation for various types of papers', and 'Viva voce nomenclature & scope and constitution of the Viva voce Boards'.

List of Electives:

- 1) MDSC GRT: Graph Theory [4 credits]
- 2) MDSC MMS: Multimedia Systems [4 credits]
- 3) MDSC MIS: Management Information System [4 credits]
- 4) MDSC MP: Microprocessor [3 credits] and MDSC – MP (P): Practicals: Microprocessor Lab [1 credit]
- 5) MDSC IR: Information Retrieval [4 credits]
- 6) MDSC EC: Embedded Computing [4 credits]
- 7) MDSC SC: Soft Computing [4 credits]
- 8) MDSC CD: Compiler Design [4 credits]
- 9) MDSC FL: Formal Languages [4 credits]
- **10) MDSC NS:** Network Security [4 credits]
- 11) MDSC CC: Cloud Computing [4 credits]
- 12) MDSC GT: Game Theory [4 credits]
- 13) MDSC PR: Pattern Recognition [4 credits]
- 14) MDSC CG: Cryptography [3 credits] and MDSC – CG (P): Practicals: Cryptography Lab [1 credit]
- 15) MDSC PP: Parallel Processing [3 credits] and
 MDSC PP (P): Practicals: Parallel Processing Lab [1 credit]
- 16) MDSC NLP: Natural Language Processing [3 credits] andMDSC NLP (P): Practicals: Natural Language Processing Lab [1 credit]
- 17) MDSC –IoT: Internet of Things [3 credits] andMDSC IoT (P): Practicals: Internet of Things Lab [1credit]
- 18) MDSC DL: Deep Learning [4 credits]
- 19) MDSC- IM: Image Processing [3 credits] and MDSC- IM (P): Practicals: Image Processing Lab [1 credit]
- **20)** MDSC CV: Computer Vision [3 credits] and
- MDSC CV (P): Practicals: Computer Vision Lab [1 credit]
- **21)** MDSC RO: Robotics [4 credits]
- 22) MDSC ARM: Advanced Regression Methods [4 credits]
- 23) MDSC ACA: Advanced Computer Architecture [4 credits]
- 24) MDSC TDA: Topological Data Analysis [4 credits]
- 25) MDSC LSP: Linux System Programming [4 credits]
- 26) MDSC CGR: Computer Graphics [4 credits]

Semester I

011760	C-101]- Computational Linear Algebra 4 Cre Objective: The course focuses on iterative techniques for solving large	sparse lines
	systems of equations which typically stem from the discretization of parti	-
	equations. In addition, computation of eigenvalues, least square proble	
	analysis will be discussed.	
	Outcome: Develop the skill set to explain and fluently apply fundation	montal line
	algebraic concepts such as matrix norms, eigen- and singular values	
	estimate stability of the solutions to linear algebraic equations and	
	problems; recognize matrices of important special classes, such as nor	e
	Hermitian, positive definite and select efficient computational algorith	-
	this classification.	
Unit	Торіс	Hrs.
1	-	0
1	Matrices and Gaussian Elimination, Matrix Notation, Matrix	8
	Multiplication Triangular Factors, Row Exchanges, Inverses and	
	Transposes, Special Matrices and Applications	
2	Vector Spaces, Subspaces, Solving $Ax = 0$, and $Ax = b$, Linear	10
-	Independence, Basis and Dimension, Four Fundamental Subspaces,	10
	Graphs and Networks, Linear Transformations	
	1	
3	Orthogonality - Orthogonal Vectors and Subspaces, Cosines and	10
	Projections onto Lines, Least Squares, Orthogonal Bases and Gram -	
	Schmidt, Fast Fourier Transform	
4	Determinants - Properties of Determinant, Formulas for the	8
	determinant, Application of Determinants.	
5	Eigenvalue Problems: Overview of eigenvalue problems –	
	Diagonalization of a Matrix, Difference Equations and Powers,	
	Differential Equations, Complex Matrices, Similarity	10
	Transformations, Positive Definite Matrices - Minima, Maxima,	
	Saddle Points, Tests for Positive Definiteness, SVD, Minimum	
-	Principles, Finite Element Method	
6	Computation with Matrices - Matrix Norms, Condition Numbers	7
	Computation of Eigenvalue, Iterative Method for Ax = b	6
TEXT B	BOOKS	

REFERENCES

1. Allaire, Grégoire, Kaber, Sidi Mahmoud, Numerical Linear Algebra, Springer (2008)

2. James W. Demmel, Applied Numerical Linear Algebra, SIAM (1997)

3. Lloyd Trefethen and David Bau III, Numerical Linear Algebra, SIAM, 1997.

[Lectures 1-29, 32-35 covered in chapter 1-6 of the Text Book]

* * *

	Course Objectiv	e:	
	Inferential statistic	s are concerned with making inferences based on re	lations found
	in the sample, to r	relations in the population. For each individual stati	stical test we
	will consider how	it works, for what data and design it is appropri	ate and how
	results should be in	nterpreted.	
	Course Outcome	: Develop the skill set to	
	reliability a the various • Write pyth	understanding of the concepts of sampling distribution and hypothesis testing, as well as the principles and p s tests of significance. on program to carry out data analyses; ne output of such analysis.	
Unit	Topic	Details	Hrs.
1	Central Limit	Expectations of Continuous Random Variables,	10
	Theorem	General Definition of Expectation, Moments of	
		Continuous Random Variables, Conditional	
		Expectation, Central Limit Theorem - Normal	
		Approximation, Applications to Sampling	
2	Basic Principles	Types of Problems, Risk Function, Mean Risk,	12
	& Estimatpion	Choice of Loss functions, Unbiased Estimates,	
	1	Efficiency, Asymptotic Efficiency, Maximum	
		Likelihood Estimation, Vector Parameters,	
		Confidence Intervals	
3	Testing	Neyman-Pearson Lemma, Composite	10
	Hypotheses	Hypotheses, Sequential Tests, Likelihood ratio	
		tests, Goodness of fit tests	
4	Linear Models -	Linear Regression, Nonlinear Regression,	10
	Estimation	Multiple Linear Regression, Matrix Methods,	
		Properties of Least Squares Estimators, Analysis	
		of Variance mode	
5	Linear Models -	General Linear Hypothesis, Confidence Intervals	10
	Testing	for regression coefficients, Simple Linear	
		Regression, Multiple Linear Regression, Analysis	
		of Variance	
	*Bay	yesian Methods are excluded throughout	
Key Te	xt(s):	TEXT BOOKS	
•		ort, Charles J. Stone, Introduction to Probability Theory	Ι,

Houghton Mifflin Company, BOSTON, Year: 2003. Chapter: 7

2. Paul G. Hoel, Sidney C. Port, Charles J. Stone, *Introduction to Statistical Theory*, 1971 Chapters: 1, 2.1 - 2.7, 3.1 - 3.5, 4.1 - 4.7, 5 **Course Objective:** Study of model formulation and discussion of documented real-world applications; Study of mathematical programming algorithms; Apply the mathematical results and numerical techniques of optimization theory to concrete Engineering problems.

Course Outcome: Develop the skill set to

- 1. do a mathematical translation of the verbal formulation of an optimization problem;
- 2. discover, study and solve optimization problems;
- **3**. Investigate, study, develop, organize and promote innovative solutions for various applications.

Unit	Title	Contents	Hrs
1	Introduction	Introduction to Linear Programming Problem (LPP),	10
		Graphical method, simplex method, Two Phase method,	
		degeneracy, alternative optima, Graphical sensitivity	
		analysis	
2	Linear Programming	LP-Duality And Sensitivity Analysis: Definition of Dual,	8
		Primal-Dual Relationships, Dual Simplex Sensitivity or	
		Post Optimal Analysis.	
3	Advanced Linear	Revised Simplex Method, Bounded-Variable	10
	Programming	Algorithm, Duality, Parametric programming	
4	Integer Programming	Formulation and Applications-Cutting Plane	8
		Algorithm-Branch and Bound Method.	
5	Deterministic	EOQ models, EOQ with price breaks, Multi-Item EOQ	8
	Inventory models	with storage limitation.	
6	Classical	Unconstrained problems: The Newton-Raphson	4
	Optimization theory	Method, Constrained problems	
7	Nonlinear	Unconstrained algorithms: Direct search, Gradient	4
	Programming	methods; Constrained algorithms: separable, quadratic	
	Algorithms	and chance constrained programmes	
Key Te	xt(s): Hamdy A.Taha	, Operations Research- An Introduction, 9th Edition, Pearson	
Educat	ion - 2017.		
Chapte	ers: 2 to 4, 7, 9, 13.1-13.3	3, 20, 21.1-21.2.3.	

[MDSC-104] – Computer Organization and Architecture 4 Credits

	5	nderstand the basics of computer organization and archi	tecture
	(CPU, memory,	, I/O).	
	Course Outcon	ne: Develop the skill to	
	 Evaluate Enhance and using Understa 	the merits and pitfalls in computer performance measuremen impact of ISA on cost/performance of computer design. the performance and take advantage of Instruction Level Pa g this with minimum hazards. nd memory hierarchy and its impact on computer's performa ce of executing programs in simulator.	arallelisn
Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	Introduction	Performance, the Power Wall, the Switch from Uniprocessors to Multiprocessors, Historical Perspective.	6
2	Instruction Set Design	Operations of the Computer Hardware, Operands of the Computer Hardware, Signed and Unsigned Numbers, Representing Instructions in the Computer, Logical Operations, Instructions for Making Decisions, Supporting Procedures in Computer Hardware, MIPS Addressing for 32-Bit Immediates and Addresses, Parallelism and Instructions.	12
3	Arithmetic for Computers	Addition and Subtraction, Multiplication, Division, Floating Point representation, Computer Arithmetic.	8
4	The Processor	Logic Design Conventions, Building a Datapath, Pipelining, Pipelined Datapath and Control, Data Hazards: Forwarding vs. Stalling, Control Hazards, Exceptions	12
5	Memory Hierarchy	The Basics of Cache, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Parallelism and Memory Hierarchies:	14

REFERENCE BOOKS:

1. Randal E. Bryant and David R. O'Hallaron, *Computer Systems: A Programmer's Perspective*, Prentice Hall, 2011 (Second Edition)

2. John P. Hayes, *Computer Architecture and Organization –* McGraw Hill Edition, 1978.

Applicable from the batch 2020-21 and onwards

[MDSC-105] – Design and Analysis of Algorithms 4 Credits

	AnalyzeImplemeWrite al	e: Develop the skill to e the problem. ent various problem solving methods. gorithms for implementing solutions. inate between different problem solving approaches.	
Unit	Unit Title	Unit Contents	No. of Periods
1	Introduction	Algorithm, Algorithm Specification, and Performance Analysis. Randomized Algorithms. Basic Data Structure: Stacks and Queues, Trees, Dictionaries, Priority Queues, Sets and disjoint Set Union, Graphs.	8
2	Divide and Conquer	Binary search, Finding MIN and MAX, Merge sort, Quick sort, Selection, Strassen's Matrix Multiplication, convex Hull.	6
3	The Greedy method	Knapsack problem, Tree vertex splitting, Job Sequencing with deadlines, minimum cost spanning Trees, optimal merge patterns, single source shortest path.	8
4	Dynamic Programming	General Method, Multistage Graph, All pairs shortest path, single source shortest path, Optimal Binary Search Trees, 0/1 Knapsack, reliability design, the traveling salesperson problem.	8
5	Basic traversal and Search Techniques	Techniques for Binary Trees, graphs, spanning tress, DFS	6
6	Backtracking	General Method, 8-queens problem, sum of subsets, Graph coloring, Hamiltonian cycles, Knapsack problems. Branch and Bound: the general method, 0/1 Knapsack problem, TSP	8
7	NP-Hard and NP-Complete Problems	Basic concepts, Cooks theorem, NP-Hard graph problems, NP- Hard Scheduling problem, NP-Hard code generation problems, some simplified NP-Hard problems	8

Reference Texts:

1. AHO, Hopcraft, Ullman, "The Design Analysis of Computer Algorithms", 1974.

2. Thomas H. Cormen, Charles E. Leiserson, R.L. Rivest, *Algorithms*, Prentice Hall of India Publications, New-Delhi, 1990.

3. Sara Baase and Allen Van Gelder, *Computer Algorithms: Introduction to Design and Analysis*, Pearson education (Singapore) Pte. Ltd, New Delhi, 1999.

4. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, *The Design and Analysis of Computer Algorithms*, Pearson Education (Singapore) Pte. Ltd New Delhi, 1974

* * *

Semester –II

[MDSC-201] -Stochastic Processes

4 Credits

Course Objective: Stochastic models are among the most widely used tools in operations research and management science. Stochastic processes and applications can be used to analyze and solve a diverse range of problems arising in production and inventory control, resource planning, service systems, computer networks and many others. **Course Outcome:** Develop the skill set to elucidate the power of stochastic processes and their range of applications; • demonstrate essential stochastic modelling tools including Markov chains and Gaussian processes; • formulate and solve problems which involve setting up stochastic models Unit No. of Topic Periods 1 Markov Chains : classification of states, transition functions, 14 existence and uniqueness of stationary distribution, expected time between successive visits to a state - positive recurrent states, 2 Convergence to the stationary distribution, Birth and death 12 chains, Branching and queuing chains. 3 Markov Processes: Continuous time discrete state Markov 12 processes, Poisson processes, birth and death processes 4 14 Gaussian processes, The Wiener process; continuity of the

Key text:

Paul G. Hoel, Sidney C. Port and Charles J. Stone, *Introduction to Stochastic Processes*, Houghton Mifflin Company, BOSTON, 1972. Chapters: 1-4.

Reference books:

1. Ross, S., Stochastic Processes, second edition, John Wiley, 1996.

mean, covariance and sample functions.

2. Goswami, A. and Rao, B. V., *A Course in Applied Stochastic, Processes, Hindustan Book Agency, 2006.*

	determining the rel forecast future obse future outcomes. It other disciplines lik Course Outcome: Develop the skill se	s is one of the most powerful methods in statistics for ationships between variables and using these relation ervations. Regression models are used to predict and ts popularity in finance is very high; it is also very po se life and biological sciences, management and engin	nships to forecast pular in neering.
	• diagnose an	d apply corrections to some problems with the g found in real data;	eneralized
Unit	Торіс	Details	No. of Periods
1	Simple Linear Regression	Model, Least Squares Estimation, Hypothesis Testing, Interval Estimation, Prediction of new observations, Coefficient of Determination, Regression through Origin, Estimation by Maximum Likelihood, Application examples	10
2	Multiple Linear Regression	Models, Estimation of model parameters, Hypothesis Testing, Confidence Intervals, Prediction of new observations, Hidden Extrapolation, Standardized Regression Coefficients, Multi Collinearity, Application examples	10
3	Model Adequacy Checking	Residual Analysis, Press Statistic, Detection and treatment of Outliers, Lack of fit	10
4	Model Adequacy Correction	Variance stabilizing transformations, Transformations to Linearize, Analytical methods for selecting a transformation, Generalized and Weighted Least squares	10
5	Generalized Linear Models	Logistic Regression, Poisson Regression, Generalized Linear Model	12

Key Text:

Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining, *Introduction to Linear Regression Analysis*, 5th Edition, Wiley, 2012. Chapters: 1 - 5, 13.

References:

Norman Draper and Harry Smith, *Applied Regression Analysis*, 3rd Edition, ISBN:9780471170822, Wiley series in Probability and Statistics - Online, 1998.

* * *

[MDSC-203] Multivariate Statistical Analysis 4 Credits

Course Objective: To learn multivariate statistical methods that uncover surprising but valid linkages between variables and explain and predict their measured values.

Course Outcome: Develop the skill set to

- 1. Select appropriate methods of multivariate data analysis, given multivariate data;
- 2. Write python program to carry out multivariate data analyses;
- Interpret the output of such analysis.

iate: normal distributions, conditional and marginal distributions ix algebra, random vectors, random sampling and Maximization Lemma ivariate normal distribution, (singular and non-singular) marginal and itional distributions; linear transformations, characteristics function; mum likelihood estimators of the parameters and their sampling butions; Assessing normality, detecting outliers and Transformation to normality of hypothesis about the mean and several means	2 8 12
ivariate normal distribution, (singular and non-singular) marginal and itional distributions; linear transformations, characteristics function; mum likelihood estimators of the parameters and their sampling butions; Assessing normality, detecting outliers and Transformation to normality	
itional distributions; linear transformations, characteristics function; mum likelihood estimators of the parameters and their sampling butions; Assessing normality, detecting outliers and Transformation to normality	12
of hypothesis about the mean and several means	
r of multivariate normal distribution, elling's T ² - statistics, its distribution and applications; Wishart bution and its properties and MANOVA	14
duction to principle components, Graphing the Principal Components; nical correlation and canonical variables; Large sample inference for nical correlation	8
er analysis: Similarity measures, Hierarchical and Nonhierarchical ering methods; classification of populations.	8
nrd Johnson and Dean Wichern <i>, Applied Multivariate Statistical Analysis (AN</i> on Publications, 2007. 4, 5.1-5.5, 6.1-6.6, 8.1-8.4, 10.1-10.4, 10.6, 12.1-12.4	1 <i>SA),</i> (6 th
	lling's T ² - statistics, its distribution and applications; Wishart bution and its properties and MANOVA duction to principle components, Graphing the Principal Components; nical correlation and canonical variables; Large sample inference for nical correlation er analysis: Similarity measures, Hierarchical and Nonhierarchical ering methods; classification of populations. rd Johnson and Dean Wichern, <i>Applied Multivariate Statistical Analysis (AM</i> on Publications, 2007.

Course Objective:

- To provide students with contemporary knowledge in parallel and distributed systems.
- To equip students with skills to analyze and design parallel and distributed applications. To provide master skills to measure the performance of parallel and distributed algorithms

Course Outcome: Students will be able to

- Apply the principles and concept in analyzing and designing the parallel and distributed system
- Reason about ways to parallelize problems.
- Gain an appreciation on the challenges and opportunities faced by parallel and distributed systems.
- Understand the middleware technologies that support distributed applications such as RPC, RMI and object based middleware.
- Improve the performance and reliability of distributed and parallel programs.

Unit	Description	No. of Periods
Ι	Characterization of Distributed Systems: Introduction, Examples of Distributed Systems, Trends in Distributed Systems, Focus On Resource Sharing, Challenges, Case Study: The World Wide Web. System Models: Physical Models, Architectural Models, Fundamental Models	10
П	Networking and Internetworking: Types of Network, Network Principles, Internet Protocols, Case Studies: Ethernet, Wifi and Bluetooth. Interprocess Communication: The API For The Internet Protocols, External Data Representation And Marshalling, Multicast Communication, Network Virtualization: Overlay Networks, Case Study: MPI	10
III	Remote Invocation: Request-Reply Protocols, Remote Procedure Call, Remote Method Invocation, Case Study: Java RMI Indirect Communication: Group communication, Publish-subscribe systems, Message queues, Shared memory approaches Web Services: Web services, Service descriptions and IDL for web services, A directory service for use with web services, XML security, Coordination of web services, applications of web services.	10

IV	Coordination and Agreement: Distributed mutual exclusion, Elections Coordination and agreement in group communication, Consensus and related problems Name Services: Name services and the Domain Name System, Directory services, Case study: The Global Name Service, Case study: The X.500 Directory Service. Time And Global States: Clocks, events and process states , Synchronizing physical clocks , Logical time and logical clocks, Global states, Distributed debugging	11
V	Distributed Transactions: Flat and nested distributed transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks. Replication: System model and the role of group communication, Fault-tolerant services, Case studies of highly available services: The gossip architecture, Bayou and Coda, Transactions with replicated data Mobile And Ubiquitous Computing: Association, Interoperation, Sensing and context awareness, Security and privacy, Adaptation, Case study: Cooltown	11
	Key Text Book: 1. George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair, <i>Distributed Systems - Concepts and Design</i> (Unit I-Unit VI) Publisher: Addison Wesley - 2012	
	 References: 2. A. Taunenbaum, "Distributed Systems: Principles and Paradigms", ISBN-10: 0132392275, Publisher: Pearson, 2006 3. G. Coulouris, J. Dollimore, and T. Kindberg, "Distributed Systems: Concepts and Design", Pearson Education, 5th Edition, 2012 	

Course Objective:

The main objective of the course is to introduce to the students about the product that is to be engineered and the processes that provide a framework for the engineering methodologies and practices.

- 1. To provide the knowledge of software engineering discipline.
- 2. To apply analysis, design and testing principles to software project development.

3. To demonstrate and evaluate real time projects with respect to software engineering principles.

Course Outcome:

Students will be able to

- Understand and demonstrate basic knowledge in software engineering.
- Identify requirements, analyze and prepare models.
- Plan, schedule and track the progress of the projects
- Design & develop the software projects.
- Identify risks, manage the change to assure quality in software projects.

Unit No.	Unit Title	Topics	No. of Periods
1	Software Engineering Basics	Software process Models, Requirement Engineering, Software Project Management, Product metrics, Project Metrics, Estimation of Software projects, Software testing.	
2	Software Architecture	Definitions and foundations in Software architecture, Architectural tactics and patterns, designing an architecture.	8
3	UML Modelling	Introduction, Use case modelling, Scenarios, Activity diagrams, Class analysis and object diagrams, Interaction diagrams, State diagrams, Component and deployment, Use Case modelling, Role of Use Cases, Example: use case modelling, Class Diagram, Relationships in class, diagrams, Generalization in class diagrams, Class Diagram Analysis – Attributes, Class Diagram: Operations, Sequence Diagram, State Diagram, State Transition Diagram: Example, Component Diagram, Deployment Diagram.	12

4	Agile Software Development	Basics of agile Process, understanding agile roles, Agile Planning, Creating User Stories Estimating, Tracking Velocity, Burndown Reports, Test-Driven Development, Continuous Integration and Deployment, Iteration Review, Improving at the Iteration Retrospective.	12
5	Agile Approaches	Agile concepts: Scrum, Extreme Programming, Lean and Kanban, Introduction to Devops for agile software development (Continuous delivery)	12

Key Text:

 Roger. S. Pressman, "Software Engineering - A Practitioner's approach", 7th Edition, MGH higher Education, 2015

```
Chapters:(1.2-1.5),2.3,5.1-5.7,17.3-17.7,18.3,18.6,23.2,25.1-25.4,26.1-26.7.
```

 Len Bass, Paul Clements, Rick Kazeman, "Software Architecture in Practice", 3rd Edition, Pearson, 2013

Chapters:1.1-1.3,2.1-2.13,13.1,13.2,17.1-17.3

- 3. Rajib Mall, "Fundamentals of Software Engineering", PHI, 3rd Edition, 2007. Chapters: 7
- 4. Scott W Ambler. Matthew Holitza, "Agile for Dummies", IBM, 2012, Chapters:1,2,3,4

Reference Texts:

- 1. Pankaj Jalote, *An Integrated Approach to Software Engineering*, 3rd Edition, Narosa Publishing House, New Delhi, 2005
- 2. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 1997
- 3. Felix Bachmann, Len Bass, David Garlen, James Ivers, Reed Little, Robert Nord, Judith Stafford, Documenting Software Architectures: Views and Beyond Paul Clements, 2nd edition, 2010.
- 4. Helm, Johnson, Vlissides, B3 Gamma Design Patterns: Elements of Reusable Object-Oriented Software, 1994

Semester –III

[MDSC-301] - Machine Learning [Theory: 3 credits; LAB: 1 credit]

Course Objective:

1. To introduce students to the basic concepts and techniques of Machine Learning.

- 2. To become familiar with regression methods, classification methods, clustering methods.
- 3. To become familiar with Dimensionality reduction Techniques

Course Outcome: Students will be able to

- Gain knowledge about basic concepts of Machine Learning
- Identify machine learning techniques suitable for a given problem
- Solve the problems using various machine learning techniques
- Apply Dimensionality reduction techniques.
- Design application using machine learning techniques (As a part of Lab).

Unit	Description	No. of Periods
1	Machine Learning: Introduction, Types of machine learning, supervised learning-Basics, Over fitting the training data.	3
2	Nearest Neighbor Methods, Validation: Nearest neighbor prediction, K-nearest neighbor methods, Weighted neighbor methods, the curse of dimensionality, Computational considerations, Connection to density estimation. Bayesian Classifiers, Naive Bayes classifier, Classifiers and Error Rates	7
3	Linear regression: Optimization, Increasing the number of features, Over fitting and method Selection, linear classification: Characterizing a linear classifier, Training a linear classifier, Logistic regression	7
4	Support vector machines (SVMs), Linear SVM, Lagrangian optimization and duality, The soft margin SVM, The kernel Trick, VC dimension	6
5	Decision Trees: Predictor form, Training Decision trees, Decision tree classifiers, Learning Decision trees, Decision stumps.	6
6	Ensemble Methods: Stacking, Bagging and Boosting	6
7	Clustering: K-means, Agglomerative, Gaussian Mixtures and EM	4
Text be 1. Hal I	ooks Daumé III, A <i>Course in Machine Learning</i> , e-Edition, 2020	

Chapters: 1, 3, 7, 9, 10, 11, 13, 15. 2. Rogers and Girolami, *A First Course in Machine Learning*, September 2015, by Chapman and Hall/CRC. Chapters: 5.1—5.3, 6.1—6.3.

Reference Books:

 Hastie, Tibshirani, and Friedman, *The Elements of Statistical Learning*, Springer, 2017
 Barber, *Bayesian Reasoning and Machine Learning*, Publisher: Cambridge University Press; Online publication date: June 2012; Print publication year: 2012; Online ISBN: 9780511804779; DOI.
 Mitchell, *Machine Learning*, McGraw Hill series, 1986

4. Chrisopher Bishap, Pattern Recognition and Machine Learning, Springer, 2006

References: https://see.stanford.edu/Course/CS229

* * *

[MDSC-301 (P)] - Practicals: Machine Learning 1 credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

[MDSC-302] – Big Data Analytics [Theory: 3 credits; LAB: 1 credit]

Course Objective:

- To provide an overview of an exciting and growing field of big data analytics.
- To introduce algorithms needed to handle big data.
- To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- To enable students to have skills that will help them to solve complex real-world problems for decision support.

Course Outcome: Students will be able to

- Understand the key issues in big data management and its associated applications in intelligent business and scientific computing.
- Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map Reduce and NO SQL in big data analytics.
- Interpret business models and scientific computing paradigms, and apply software tools for big data analytics.
- Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.

S. No	UNIT	Topics	No. of Periods
1	Introduction to Big Data	Big Data – Why & Where?, Characteristics of Big Data, Distributed File Systems, MapReduce, Algorithms using MapReduce	3
2	Similarity Algorithms	Near-Neighbor search, Shingling, Similarity preserving summary, Locality sensitive functions, Distance measures, Locality sensitive hashing and its applications to different distance measures	8
3	Streaming Data	Stream Data model, Sampling data in a stream, filtering streams, Counting distinct elements in a stream, Application of stream algorithms in counting	8
4	Link Analysis	Page Rank, Computation of Page Rank, Topic sensitive page rank, Link spam	4

5	Frequent Item sets	Market-Basket model, A-priori algorithm, Larger datasets in main memory, Limited pass algorithms	8	
6	Social Network Graphs	Clustering, Discovery of Communities, Partitioning, Finding overlapping communities, Simrank, Counting Triangles, Neighborhood properties	8	
		Total	39 hours	
Key Text:				
Anand Rajaraman, "Mining Massive Datasets", Stanford University Press – 2014				
Chapte	ers: 2.1 - 2.3, 3.1 - 3.7, 4.1 - 4	4.6, 5.1 - 5.4, 6.1 - 6.4, 10		

[MDSC-302 (P)] – Practicals: Big Data Analytics - 1 Credit

- This will be evaluated internally.

List of Assignments:

- 1. MapReduce Implementation
- 2. Bloom Filter Implementation
- 3. Jaccard Similarity implementation
- 4. Page Rank algorithm implementation
- 5. Min Hash Implementation

[MDSC-303] – Data Visualization [Theory: 2 credits; LAB: 2 credits]

Course Objective:

- Design effective data visualizations in order to provide new insights into a research question or communicate information to the viewer.
- Find and select appropriate data that can be used in order to create a visualization that answers a particular research question.
- Understand how Cultures of Practice influence the way data may be collected, described, or formatted in order to align their own data management practices with those of their discipline

Course Outcome: Students will be able to

- Properly document and organize data and visualizations in order to prepare them for reuse.
- Handle data and data visualizations in a manner that demonstrates an understanding of ethical considerations surrounding data (including data storage, citation, and protection).

Unit	Unit Title	Unit Contents	No. of			
No.		P				
1	Effective	Purpose, Scope, Communication Style, Quantitative	6			
	Communication of	relationships, Differing roles of tables and graphs				
	Quantitative					
	Information					
2	Visual Perception	Mechanics of Sight, Applying visual attributes to	10			
	and Graphical	design, Gestalts principle, Fundamental variations of				
	Communication	tables, Fundamental variations of graphs				
3	General Design	General Design Organizing, Highlighting, Integration, Table design,				
	principles for	General graph design, Component level graph				
	Communication	design, Multi-Variable display				
Key T	ext - Stephen Few, Shor	v me the numbers: Designing tables and graphs to enlighten,	2 nd			

Key Text - Stephen Few, *Show me the numbers: Designing tables and graphs to enligh* Edition, Publisher: Analytics Press, 2012

Chapters - 1 to 11

Reference Text - Edward R. Tufte, *The Visual display of quantitative information*, 2nd Edition, ISBN-13 : 978-1930824133, Publisher : Graphics Press (1 May 2001)

[MDSC-303 (P)] – Practicals: Data Visualization

This will be evaluated internally.

Unit I - Fundamentals: Introduction to Matplotlib, importing libraries in python, Basic Scatter plot, Creating Axes, Line plot

Unit II - Customization: Title & Axis labels, Equations in text, Formatting Axis ticks, Customizing Tick Labels, Adding Legend, Annotations, Plot Styles

Unit III - Types of Visualizations: Histograms, Bar Graphs, Box and Whisker Plots, Pit charts, 2D histograms, Images, Colour maps, 3D Line and Scatter plots, Adding animation.

* * *

[MDSC 304 – Hadoop Programming] [Theory: 2 Credits; Lab: 2 Credits]

Course Objective:

- Learn the core techniques and concepts of Big Data and Hadoop ecosystem.
- Write code using MapReduce framework
- Understanding the HDFS architecture
- Write code using the Apache Spark framework

Course Outcome: Student will be able to

- Think in MapReduce paradigm
- Analyze data using Hadoop MapReduce / Apache Spark algorithms
- Design Hadoop / Spark clusters

Unit No.			No. of Periods	
1	Hadoop Overview	Big Data Technologies, Challenges in Big Data Management, Hadoop Architecture, Phases in MapReduce, MapReduce example programs, HDFS Design, HDFS command line interface	6	
2	Spark Programming Concepts	Architecture, Unified Stack, RDD, RDD Operations	6	
3	Spark SQL	DataFrames, DataSets, SQL in Spark	7	
4	Spark Streaming	Concepts, DStream, Structured Streaming	7	

Chapters: 2 (2.1 - 2.3 till Combiner Functions), 3 (3.1 - 3.3 till Command Line Interface)

2. Hien Luu, "Beginning Apache Spark 2," Apress, 2018.

Chapters: 1, 3, 4, 6

MDSC-304 (P) – Practicals: Hadoop Programming 2 credits

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

* * *

List of Electives:

- 1) MDSC GRT: Graph Theory [4 credits]
- 2) MDSC MMS: Multimedia Systems [4 credits]
- 3) MDSC MIS: Management Information System [4 credits]
- 4) MDSC MP: Microprocessor [3 credits] and MDSC – MP (P): Practicals: Microprocessor Lab [1 credit]
- 5) MDSC IR: Information Retrieval [4 credits]
- 6) MDSC EC: Embedded Computing [4 credits]
- 7) MDSC SC: Soft Computing [4 credits]
- 8) MDSC CD: Compiler Design [4 credits]
- 9) MDSC FL: Formal Languages [4 credits]
- **10) MDSC NS:** Network Security [4 credits]
- 11) MDSC CC: Cloud Computing [4 credits]
- 12) MDSC GT: Game Theory [4 credits]
- 13) MDSC PR: Pattern Recognition [4 credits]
- 14) MDSC CG: Cryptography [3 credits] and MDSC – CG (P): Practicals: Cryptography Lab [1 credit]
- 15) MDSC PP: Parallel Processing [3 credits] and
 MDSC PP (P): Practicals: Parallel Processing Lab [1 credit]
- 16) MDSC NLP: Natural Language Processing [3 credits] andMDSC NLP (P): Practicals: Natural Language Processing Lab [1 credit]
- 17) MDSC –IoT: Internet of Things [3 credits] andMDSC IoT (P): Practicals: Internet of Things Lab [1credit]
- 18) MDSC DL: Deep Learning [4 credits]
- 19) MDSC- IM: Image Processing [3 credits] and MDSC- IM (P): Practicals: Image Processing Lab [1 credit]
- **20)** MDSC CV: Computer Vision [3 credits] and
- MDSC CV (P): Practicals: Computer Vision Lab [1 credit]
- 21) MDSC RO: Robotics [4 credits]
- 22) MDSC ARM: Advanced Regression Methods [4 credits]
- 23) MDSC ACA: Advanced Computer Architecture [4 credits]
- 24) MDSC TDA: Topological Data Analysis [4 credits]
- 25) MDSC LSP: Linux System Programming [4 credits]
- 26) MDSC CGR: Computer Graphics [4 credits]

	CODE: MDS	C-GRT	Graph Theory	4 Credits	
Cours	e Objectives:				
This co	ourse is aimed to cov	ver a varie	ty of different problen	ns in Graph Theory. In t	his
course	e students will come	across a n	umber of theorems an	d proofs. Theorems wil	l be
stated	and proved formally	y using va	rious techniques. Vari	ous graphs algorithms	will
	e taught along with i	U	-	010	
	e Outcome: Develop	,			
•	1			and trees, both quantita	atively
•	and qualitatively.	n wona p	roblems using gruphs	und trees, bour quantit	utively
•	apply the basic cond	cepts of ma	athematical logic		
٠		-	e	concepts of graph theor	y
Unit	Title		Content	S S	Hrs
1	Introduction	Graphs ar	nd Graph model, Conne	cted graphs, Multi	6
		graphs an	nd Digraphs		
2	Degree	Degree of	a vertex, Regular graph	, Degree sequence	6
3	Isomorphism of	Definitior	n of isomorphism, Isomo	orphism as a relation	6
	graphs				
4	Trees	Bridges, T	Trees, Minimal Spanning	g trees	6
5	Connectivity	Cut-vertio	ces, Blocks, Connectivity	7	8
6	Traversability	Eulerian g	graph, Hamiltonian grap	ph	6
7	Planarity	Planar gra	aph, Embedding planar	graphs on surface	6
8	Coloring	Color Pro	blem, Vertex Coloring		8
Key Te	ext: Gary Chartrand, Pi	ng Zhang,	Introduction to Graph The	eory (reprint), Tata McGra	w Hill,
2006					
Chapte	ers: 1 to 6, 9, 10.				

	CODE:	MDSC- MMS MULTIMEDIA SY	STEMS	4 Credit	s
Cours	e Objective	:			
•	The object	ive of this course is to provide students with	a basic unders	tanding of	
	multimed	a systems.		-	
٠		e focuses on topics in multimedia informatio	-		0
	-	aspects, multimedia networking and comm		d multimedi	a
<u> </u>		especially on the audio, image and video co	mpression.		
		Students will be able to			
•		basic understanding of multimedia systems.		1	1
•		background equipment, students would be ltimedia systems.	able to evaluate	e more adva	anced or
•		e will also arouse students' interest in the co	urse and furthe	er motivate	them
•		eveloping their career in the area of multime			
Unit	Unit	Unit Contents		or up pineuro	No. of
No.	Title				Periods
1	Unit-I	Introduction to Multimedia: media and dat	a streams: Med	ium main	12
		properties of Multimedia systems-multime	dia traditional	data	
		streams characteristics–Data streams Chren	natistics for cor	ntinuous	
		media-information units-sound/audio: Basi	c concepts com	puter	
		image processing.	Ĩ	1	
2	Unit-II	Video and Animation Basic Concepts –Tele	vision compute	er based	12
		Animation-Data compression: Storage space	-		
		Source, entropy and hybrid coding some b			
		techniques-JPEGH261-MPEG-DVI	1		
3	Unit-III	Optical Storage Media: Basic Technology-V	ideo Disks and	other	14
		WORMs Compact Disk Read Only Memory			
		Architecture-CDROM Technologies-BDisk-			
4	Unit IV	Software And Hardware Components 2D			14
-	Chitry	Multimedia Design Of Authoring Tools	1		
		Multimedia Project Case Studies Multi	0 0	tion	
		Systems Video ConferencingVirtual Re			
	<u> </u>	Systems video Comerencing vintual Re	anty		
Key Te 1. Tov		Multi Media - Making It Work, Osborne McGra	aw Hill,1993		
	U	pronicz, Multi Media Networking, McGraw H			
	2	John, A Multimedia Technology and App		Harwood I t	d.
ui	,,orth	,,	Lino I	101 11 000 Dt	/

London, 1991.

CODE: MDSC-MIS Management Information System 4 Credits

Course Objective:

- Recognize contemporary MIS theory and how information systems support business strategy, business processes, and practical applications in an organization.
- Interrelate how various support systems can be used for business decisions and to sustain competitive advantage.
- Describe how the Internet and World Wide Web provide a global platform for ebusiness, business mobility and communications, collaboration, and cloud computing.
- Express the proven value of, and relationship between business data, data management, and business intelligence.

Course Outcome: Students will be able to

- analyze, evaluate, and make recommendations regarding business technology and decisions.
- not only identify problems but also generate solutions and make recommendations based on a logical and thorough analysis of the alternatives.
- evaluate techniques and processes to think differently and to solve and resolve problems by using technology, making informed decisions.
- strengthen and enhance their skills in effective communication through written and oral analyses of cases.

Unit	Unit Title	Unit Contents	No. of
No.			periods
1	Foundation	Foundations of Information Systems in Business :	10
	Concepts	Information Systems in Business, The Components of	
		Information Systems	
2	Information	Using Information Technology for Strategic	12
	Technologies	Advantage, Data Resource Management: Technical	
		Foundations of Database Management, Managing	
		Data Resources.	
3	Business	E-Business Systems, Functional Business Systems, and	10
	Applications	Enterprise Business Systems: ERP, SCM, Supporting	
		Decision Making: Decision Support in Business.	
4	Development	Developing Business/IT Strategies: Planning	10
	Processes	Fundamentals, Implementation Challenges	
		Developing Business/IT Solutions: Developing	
		Business Systems, Implementing Business Systems	
5	Management	Security and Ethical, and Societal Challenges of IT,	10
	Challenges	Security Management of Information Technology	

• work collaboratively, demonstrating courtesy, using appropriate etiquette, in preparing and presenting presentations

Key Texts:

1. James O'Brien, Management Information System, 11th edition, TMH, 2019.

Chapters: 1,2,5,7,8,10,11,12,13

References:

1. Effy Oz, Management Information System, Thomson Learning, 5th edition, 2007.

2. W.S. Jawadekar, Management Information System, 7th edition, TMH, 2008

3. Steven Alter, *Information Systems the foundation of E-Business*, 4th Edition, Person education, 2002.

4. Turban, McLean, Wetherbe, Information Technology for management, 4th edition, Wiley, 2007

5. Mahadeo Jaiswal & Monika Mittal, *Management Information Systems*, Jaswal Oxford Press, 2004

6. Laudon and Loudon, Management Information Systems, 10th edition, Pearson Educations, 2007

CODE: MDSC-MP(T):MICROPROCESSOR: Theory 3 Credits : lab 1 Credit

Course Objective:

- To equip students with the fundamental knowledge and basic technical competence in the field of Microprocessors.
- To emphasize on instruction set and logic to build assembly language programs.
- To prepare students for higher processor architectures and Embedded systems

Course Outcome: Students will be able to

- Describe architecture of x86 processors.
- Interpret the instructions of 8086 and write assembly and Mixed language programs.
- Explain the concept of interrupts
- Identify the specifications of peripheral chip

Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	Overview of VLSI technology	Applications of Microprocessors & Embedded systems in daily life	3
2	8085 Microprocessor Architecture & Microcomputer System	Microprocessor Architecture and its Operations, Memory, Input/Output, 8085 MPU. Instruction Classification, Instruction Format. Overview of Instruction cycle, machine cycle, T-states, op-code fetch memory read and memory write; Interrupts.	9
3	Instruction Set of 8085 µP and Assembly Language Programming-I	Data Transfer (8 Bit, 16 Bit, from memory to µp & from µp to memory) Instructions, Arithmetic (8 & 16 Bit) Operations, Arithmetic Operation related to Memory, Logic Operations (Including Rotate & Compare), Branch Operations.	9
4	Assembly Language Programming-II	Counter and Time Delays, Stack, Subroutine, Conditional Call & Return Instructions; BCD to Binary conversions & arithmetic manipulations.	9
5	Intel 8086 Microprocessor	Pin Description, Operating Mode, Registers, Interrupts, Addressing modes. Comparison with 8085 microprocessor. Overview of other Microprocessors from Intel, Zilog and Motorola.	9

Key Text: Ramesh S. Gaonkar, Microprocessor Architecture, *Programming and Applications with 8085/8080A* – Wiley Eastern Limited, 5th edition, 2002

Reference Books:

1. B.RAM, Fundamentals of Microprocessors and Microcomputers – Dhanpat Rai Pub., 3rd edition, 2008

2. Barry R. Brey, *The Intel Microprocessors 8086/8080, 186/286, 386, 486, Pentium and Pentium Pro Processor Architecture, Programming and Interfacing* – PHI – 3rd edition, 2009

3. S.K.Sen, *Understanding of 8085/8086 microprocessor and peripheral ICs*, New Age International Publishers, 2nd Edition 2010.

CC	CODE: MDSC-MP(P): Practicals: Microprocessor Lab 1 Credit				
The follo	The following programs will be simulated and tested on microprocessor hardware.				
Program	Program Title				
No.					
1	Transfer of a block of numbers				
2	Addition of n 8-bit numbers				
3	a) Multiplication by repeated addition				
	b) Multiplication by shift and add method				
4	Sorting to arrange in ascending order				
5	Delay routine for a specified time				
6	16-bit arithmetic (Register pair operations)				
7	BCD to Binary and Binary to BCD Conversion				
8	BCD Addition, BCD Subtraction, Multiplication				
9	Programming with few interface kits like Traffic controller, Elevator, music				
	synthesizer, LCD displays etc.				

* * *

Г

	CODE: MDSC-IR: INFORMATION RETRIEVAL 4 Credits			
Course Objectives:				
•	retrieval and mo Word statistics, V normalization, d	ve of this course is to present the basic concepts in informat re advanced techniques of multimodal based information s Vector space model (relevance feedback, query expansion, d ocument re-ranking), evaluation of retrieval, generalized VS ng, Web retrieval, data fusion, meta search, multimodal retri	ystems. locument 5M, latent	
Cours	e Outcome: Stude	ent will be able to		
•		underlined problems related to IR and		
•	acquired the nec Information Retr	essary experience to design, and implement real applicatior rieval systems.	is using	
Unit	Unit Title	Unit Contents	No. of	
No.			Periods	
1	Introduction	Boolean retrieval, the term vocabulary and postings lists, Dictionaries and tolerant retrieval	10	
2	Indexing	Index construction, Index compression	12	
3	Scoring	Scoring, term weighting & the vector space model, Computing scores in a complete search system	10	
4	Evaluation and Query Expansion	Evaluation in information retrieval, Relevance feedback & query expansion	10	
5	Classification	Text classification & Naive Bayes, Vector space classification	10	
Key Text: Manning, Raghavan and Schutze, <i>Introduction to Information Retrieval</i> , 2009,				
Freely Downloadable (<u>http://nlp.stanford.edu/IR-book/information-retrieval-book.html</u>)				
Chapters: 1 to 9, 13, 14				
<u> </u>	, ,			

CODE: MDSC-EC: EMBEDDED COMPUTING

Course Objective:

- To have knowledge about the basic working of a microcontroller system and its programming in assembly language.
- To provide experience to integrate hardware and software for microcontroller applications systems.

Course Outcome: Students will be able to

- To acquire knowledge about microcontrollers embedded processors and their applications.
- Foster ability to understand the internal architecture and interfacing of different peripheral devices with Microcontrollers.
- Foster ability to write the programs for microcontroller.
- Foster ability to understand the role of embedded systems in industry.
- Foster ability to understand the design concept of embedded systems.

Unit	Unit Contents	Topics	No. of
No			Periods
1	An Overview	Introduction to embedded systems; Complex systems and	12
	of Embedded	microprocessors, embedded system design process,	
	Computing	Design example: Model train controller, Instructions Sets:	
		Preliminaries, ARM Processor	
2	Embedded	Programming Input and output, Supervisor mode,	14
	Hardware	exceptions and traps, coprocessors, memory system	
	Fundamentals	mechanism, cpu performance,	
3	Embedded	Basic computing platforms, cpu bus, memory device and	12
	Software and	systems, designing with computing platforms,	
	Platforms		
4	Program,	components for embedded systems, models of programs,	14
	Design and	assembly, linking and loading, compilation techniques,	
	Analysis	program level performance analysis, optimization, programs,	
	Exercises	validation and testing, system design techniques, design	
		methodologies requirement analysis,	

Key Text:

1. Wayne Wolf, *Computers as Components: Principles of Embedded Computing System Design*, Morgan Kauffman Publishers, 2nd edition, 2008.

Chapter 1 (1.11.4), 2 (2.12.3), 3(3.13.6), 4 (4.14.5), 5(5.15.7, 5.95.10), 7(7.17.3),

REFERENCE BOOKS:

1. Sriram Iyer and Pankaj Gupta, *Embedded Real-time Systems Programming*, Tata McGraw Hill, 2004 (Tenth reprint)

2. Raj Kamal, Embedded Systems, Hill Pub. Co. Ltd, 11th print 2007. [Chaps 15, Appendix G]

3. David E. Simon, An Embedded Software Primer, Pearson Education, 2007. [Chps 510]

4. Programming for Embedded Systems, Dream Software Team, WILEY dreamtech India Ltd. 2005.

CODE: MDSC-SC:SOFT COMPUTING

Course Objective:

- To conceptualize the working of human brain using ANN.
- To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems.
- To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience.
- To provide the mathematical background for carrying out the optimization and familiarizing genetic algorithm for seeking global optimum in self-learning situation.

Course Outcome: Students will be able to

- analyze and appreciate the applications which can use fuzzy logic.
- design inference systems.
- understand the difference between learning and programming and explore practical applications of Neural Networks (NN).
- appreciate the importance of optimizations and its use in computer engineering fields and other domains.
- understand the efficiency of a hybrid system and how Neural Network and fuzzy logic can be hybridized to form a Neuro-fuzzy network and its various applications.

Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	INTRODUCTION	Foundations of Fuzzy Set Theory: Fuzzy Sets - Basic	12
		Definition and Terminology -Set-theoretic Operations -	
		Member Function Formulation and Parameterization – Fuzzy	
		Logic - Fuzzy Rules and Fuzzy Reasoning: Fuzzy If-Then	
		Rules - Fuzzy Reasoning - Fuzzy Inference Systems – Fuzzy	
		Models - Input Space Partitioning and Fuzzy Modeling.	
		Optimization: Derivative-based Optimization - Descent	
		Methods - Derivative-free Optimization - Simulated	
		Annealing - Random Search.	
2	ARTIFICIAL	Basic concepts-Supervised learning - Perceptron - Multilayer	10
	NEURAL	Perceptron: Back Propagation Model - Unsupervised	
	NETWORKS	learning - Competitive learning - Kohonen'sself organizing	
		networks - Hopfield network	
3	NEURO - FUZZY	Introduction to Neuro - Fuzzy and Soft Computing -Adaptive	10
	MODELING	networks based Fuzzy interface systems - Classification and	
		Regression Trees - Data clustering algorithms - Rule based	
		structure identification – Neuro - Fuzzy controls -	
		Evolutionary computation	
4	GENETIC	Survival of the Fittest - Fitness Computations - Cross over -	10
	ALGORITHMS	Mutation - Reproduction - Rank method - Rank space method	
5	OTHER TOPICS	Combinations of Neural Networks and Genetic Algorithms –	10
		Genetic Algorithms and Fuzzy Logic – Neuro-Fuzzy Genetic	
		Approach – Cellular Neural Networks: Fuzzy Cellular	

Applicable from the batch 2020-21 and onwards

Neural Networks – Simple Applications –Soft Computing	
Based Distributed Intelligent Systems – Elements of Chaos	
Theory	

Key Text:

1. R.A. Aliev and A.R. Aliev, Soft Computing and Its Applications, World Scientific Publishers, 2001.

2. Jang J.S.R., Sun C.T. and Mizutani, *Neuro-Fuzzy and Soft Computing*, E Prentice Hall 1998.

3. James A Freeman / David M Skapura, *Neural Networks: Algorithms, Applications and Programming Techniques,* Pearson Education Asia1991.

4. Luigi Fortuna, Gianguido Rizzoto, Giuseppe Nunnari, *Soft Computing*, Springer – 2001 **REFERENCE BOOKS:**

1. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, USA, 1995.

2. Timothy J. Ross, Fuzzy Logic with Engineering Applications, McGraw Hill, 1997.

3. A.Di. Nola, Lakshmi C Jain, Mauro Madravo, *Soft Computing: A fusion of foundations, methodologies and applications,* Springer – Verlag Berlin Heidelberg, 2004.

4. Laurene Fausett, Fundamentals of Neural Networks, Prentice Hall, 1994.

5. D. E. Goldberg, *Genetic Algorithms: Search, Optimization and Machine Learning*, Addison Wesley, N.Y, 1989.

CODE: MDSC-CD : COMPILER DESIGN

Course Objective:

- To understand the role and functioning of various system programs over application program.
- To understand basic concepts and designing of assembler, Macro processor and role of static and dynamic loaders and linkers.
- To understand the need to follow the syntax in writing an application program and to learn how the analysis phase of compiler is designed to understand the programmer's requirements without ambiguity.
- To synthesize the analysis phase outcomes to produce the object code that is efficient in terms of space and execution time.

Course Outcome:

- Identify the relevance of different system programs.
- Describe the various data structures and passes of assembler design.
- Identify the need for different features and designing of macros.
- Distinguish different loaders and linkers and their contribution in developing efficient user applications.
- Construct different parsers for given context free grammars.
- Justify the need synthesis phase to produce object code optimized in terms of high execution speed and less memory usage.

Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	UNIT I	Introduction - Why compilers? - Programs related to compiler –	2
		Overview of compilation, Phases of Compilation, Lexical	
		Analysis, The Translation Process - Major Data structures in a	
		compiler - Boot trapping and porting	
2	UNIT II	Scanning - The scanning process - Regular expressions - Finite	5
		automata - Regular expressions to DFA	
3	UNIT III	Context free grammars and Parsing - The Parsing process -	4
		CFG - Parse trees and Abstract Syntax Trees - Ambiguity	
4	UNITIV	Top-Down Parsing - Recursive descent parsing - LL(1) Parsing	7
		- First and Follow sets - Error recovery	
5	UNITV	Bottom-Up Parsing - Overview - LR(0) parsing - SLR(1) parsing	7
		- LR(1) and LALR(1) parsing - Error recovery	
6	UNITVI	Semantic analysis - Attribute Grammar - Algorithms for	12
		attribute computation - Symbol table - Data types and type	
		checking	
7	UNITVII	Runtime environments - Fully static environment- stack-based	7
		environment - Fully dynamic environment - Parameter passing	
		mechanisms	
8	UNITVIII	Code Generation - Intermediate code and data structures -	8
		Basic techniques - Code generation for data structure references	

		- Code generation for control statements and logical	
		expressions - Code generation for functions and procedure	
		calls, Code Optimization	
Kev Tex	t:		

Key Text:

Kenneth C. Louden, Compiler Construction: Principles and Practice, Cengage Learning Publishers, Indian Edition, 1997

Chapters: 1.1-1.6, 2.1-2.4, 3.1 – 3.4, 4.1 – 4.3, 4.5, 5.1, 5.1 – 5.4, 5.7, 6.1-6.4, 7.1 – 7.5, 8.1 – 8.5

CODE: MDSC-FL: FORMAL LANGUAGES **4** Credits

Course Objective:

Differentiate and manipulate formal descriptions of languages, automata and grammars with focus on regular and context-free languages, finite automata and regular expressions.

Course Outcome:

- Explain and manipulate the different concepts in automata theory and formal languages such as formal proofs, (non-)deterministic automata, regular expressions, regular languages, context-free grammars, context-free languages, Turing machines;
- Explain the power and the limitations of regular languages and context-free languages. Unit Unit **Unit Contents** No. of Title No. Periods 1 UNIT I 8 Deterministic Finite Automata, Non-deterministic automata, Equivalence of NFA and DFA, Reduction in number of states in Finite Automata 2 UNIT II Regular Languages and Regular Grammars: Regular expressions, 8 Connection between regular expressions and regular languages, Regular Grammars, Closure properties of Regular languages, Pumping lemma-Non regular languages. 3 UNITIII 8 Context free grammars, Parsing Ambiguity, Context free grammars and programming languages, Simplification of complex grammars and their normal forms (Chomsky and Greibach Normal form. 4 UNIT IV Pushdown Automata: Nondeterministic pushdown automata, 8 deterministic pushdown automata, Pushdown automata and context free languages, Context free grammars and pushdown automata.), Properties of context free languages, Pumping lemma for non-context free languages 5 UNITV 10 Hierarchy of formal languages and automata: Recursive languages and Recursively enumerable languages, Unrestricted grammars, Context sensitive grammars and languages, Chomsky hierarchy 6 UNITVI Turing machines: Standard Turing machine, Combining Turing 10 machine for complicated tasks, Turing thesis, Variations in Turing machine, Linear Bound automata.

Key Text:

P.Linz, Introduction To Formal Languages and Automata, Narosa Pub. 1997.

REFERENCES

1. A. Salomaa, Formal Languages, Academic Pub., 1973.

2. Gyorgy E Revesz, Introduction to Formal Languages, McGraw-Hill Book Co., 1985

CODE: MDSC-NS: NETWORK SECURITY 4 Credits

Course Objective:

- To explore the design issues and working principles of various authentication protocols, PKI standards and various secure communication standards including Kerberos, IPsec, and SSL/TLS and email.
- To develop the ability to use existing cryptographic utilities to build programs for secure communication.

Course Outcome:

- Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes.
- Apply different digital signature algorithms to achieve authentication and design secure applications
- Understand network security basics, analyze different attacks on networks and evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP.
- **Unit Title Unit Contents** Unit No. of No. Periods 1 Introduction Computer Security Concepts, The OSI Security Architecture, 4 Security Attacks, Security Services, Security Mechanisms, A Model for Network Security 2 Symmetric Symmetric Encryption Principles, Symmetric Block Encryption 10 Encryption Algorithms, Random and Pseudorandom Numbers, Stream Ciphers and RC4, Cipher Block Modes of Operation 3 Message Approaches to Message Authentication, Secure Hash Functions, 4 Authentication Message Authentication Codes Hash and **Functions** 4 Public Key Public-Key Cryptography Principles, Public-Key Cryptography 6 Algorithms, Digital Signatures Cryptography 5 Key Distribution Kerberos, X.509 Certificates, Public-Key Infrastructure 6 and User Authentication Cloud Security Risks and Countermeasures, Data Protection in the 6 Cloud Security 4 Cloud, Cloud Security as a Service 7 Transport-Level Web Security Considerations, Secure Sockets Layer (SSL), 6 Transport Layer Security (TLS), HTTPS, Secure Shell (SSH) Security Electronic Mail 8 Pretty Good Privacy (PGP), S/MIME 6 Security 9 IP Security Overview, IP Security Policy, Encapsulating Security **IP** Security 6 Payload, Combining Security Associations
- Analyze and apply system security concept to recognize malicious code.

Key Text:

William Stallings, *Cryptography and Network Security: Principles and Practice*, 5th edition, Pearson Education Inc., 2011.

Chapters: 1.1-1.6, 2.1-2.5, 3.1-3.6, 5.1-5.6, 6.1-6.5, 9.1-9.4, 10.1-10.4, 11.1-11.6, 12.1-12.6, 13.1-13.4, 14.1-14.5, 15.1-15.3, 16.1-16.5, 18.1-18.3, 19.1-19.5

REFERENCE BOOKS:

1. Richard R. Brooks, *Introduction to Computer and Network Security: Navigating Shades of Gray*, 1st Edition, 2013.

2. Charlie Kaufman, Radia Perlman and Mike Speciner, *Network Security: Private Communication in a public world*, 2nd Edition, ISBN 0-13-046019-PrenticeHall PTR, 2002.

	CODE: M	IDSC –CC: CLOUD COMPUTING 4 Credits	_
Course	e Objective:		
٠	To learn how to use C	loud Services.	
٠	To implement Virtual	ization	
•	To implement Task Se	cheduling algorithms.	
٠	Apply Map-Reduce c	oncept to applications.	
٠	To build Private Clou	d.	
٠	Broadly educate to kr	now the impact of engineering on legal and societal issues involve	ed
Course	e Outcome: Students w	vill be able to	
•	Analyze the Cloud co architectures.	omputing setup with it's vulnerabilities and applications using	different
•		kflows according to requirements and apply map reduce prog	rammino
•	model.	knows according to requirements and apply map reduce progr	anning
•		itable Virtualization concept, Cloud Resource Management an	d design
	scheduling algorithm	1 0	0
•	0 0	auctions for cloud resources and design scheduling algori	thms for
	computing clouds		
•	Assess cloud Storage	systems and Cloud security, the risks involved, its impact and	develop
	cloud application		
٠	Broadly educate to k	now the impact of engineering on legal and societal issues inv	volved in
	-	ty issues of cloud computing.	T
Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	Introduction;	Cloud computing at a glance; Historical Developments;	7
	Principles of	building Cloud computing environment; computing	
	Parallel and	platforms and Technologies Principles of Parallel and	
	Distributed	Distributed Computing: Eras of Computing; parallel Vs.	
	Computing	distributed computing; elements of distributed computing;	
	Computing	technologies of Distributed computing	
2	X7: (1: (: 1		0
2	Virtualization and	Characteristics of virtualized environments; virtualization	8
	Cloud Computing	techniques; virtualization and cloud computing; pros and cons	
	Architecture	of virtualization; examples. Cloud Reference model; Types of	
		clouds; cloud economics; open challenges	
3	Aneka: Cloud	Overview; anatomy of the Aneka container; building Aneka	7
	application	clouds; cloud programming and management	
	Platform		
4	Concurrent	Introducing parallelism; programming with threads;	10
	Computing and	multithreading with Aneka; applications; Task Computing;	
	High-Throughput	task based Application Model; Task based Programming;	
	Computing and		
	1 0	Data Intensive Computing; Technologies; Aneka Map Reduce	
	Map Reduce	Programming	
	Programming		

5	Cloud Platforms in	Amazon Web services; Google App Engine; Microsoft Azure;	8
	Industry and	Cloud scientific Applications; Business and Consumer	
	Cloud Applications	Applications	
6	Advanced Topics	Energy Efficiency Clouds; Market based management clouds;	12
	in Cloud	Federated Clouds; Third Party Cloud Services; Infrastructure	
	Computing and	Security: Network level security, Host level security, and	
	Cloud Security	Application level security; Data security and Storage	

Key Text:

Editors: Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, *Mastering Cloud Computing*, MGH-2013.

Chapters: 1,2,3,4,5,6,7,8,9,10,11

REFERENCE BOOKS

1. Editors: RajkumarBuyya, James Broberg, Andrzej M. Goscinski, *Cloud Computing: Principles and Paradigms, Wile*, 2011

2. Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010

3. *Editors:* Nikos Antonopoulos, Lee Gillam, *Cloud Computing: Principles, Systems and Applications,* Springer, 2012

4. Ronald L. Krutz, Russell Dean Vines, *Cloud Security: A Comprehensive Guide to Secure Cloud Computing*, Wiley-India, 2010

CODE: MDSC-GT:GAME THEORY 4 Credits

Course Objective:

- To introduce Game Theory. Game Theory is a mathematical framework which makes possible the analysis of the decision making process of interdependent subjects.
- It is aimed at explaining and predicting how individuals behave in a specific strategic situation, and therefore help improve decision making.
 A situation is strategic if the outcome of a decision problem depends on the choices of more than one person. Most decision problems in real life are strategic.
- The course will explain in depth the standard equilibrium concepts (such as Nash Equilibrium, Subgame-Perfect Nash Equilibrium, and others) in Game Theory.

Course Outcome: Student will be able to

- Identify strategic situations and represent them as games
- Solve simple games using various techniques
- Analyse economic situations using game theoretic techniques
- Recommend and prescribe which strategies to implement

Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	Introduction	Games and Solutions, Game theory and the Theory of	7
		Competitive Equilibrium, Rational Behaviour, The Steady	
		State and Deductive Interpretations, Bounded Rationality,	
		Terminology and Notation.	
2	Nash	Strategic Games, Nash Equilibrium, Existence of a Nash	7
	Equilibrium	Equilibrium, Strictly Competitive Games, Bayseian Games:	
		Strategic Games with Imperfect Information.	
3	Mixed,	Mixed Strategy Nash Equilibrium, Interpretations of Mixed	7
	Correlated, and	Strategy Nash Equilibrium, Correlated Equilibrium,	
	Evolutionary	Evolutionary Equilibrium.	
	Equilibrium		
4	Rationalizability,	Rationalizability, Iterated Elimination of Strictly Dominated	7
	Iterated	Actions, Iterated Elimination of Weakly Dominated Actions	
	Elimination of		
	Dominated		
	Actions		
5	Knowledge and	A Model of Knowledge, Common Knowledge, Can People	8
	Equilibrium	Agree to Disagree, Knowledge and Solution Concepts, The	
		Electronic Mail Game	
6	Extensive	Extensive Games With Perfect Information, Sub game	8
	Games with	Perfect Equilibrium, two Extensions of the Definition of	

	Perfect	Game, and The Interpretation of a Strategy, Two Notable	
	Information	Finite Horizon Games, and Iterated Elimination of Weakly	
		Dominated Strategies.	
7	Bargaining	Bargaining and Game Theory, A Bargaining Game of	8
	Games	Alternating Offers, Sub game Perfect Equilibrium,	
		Variations and Extensions	

Key Text:

Martin J Osborne and Ariel Rubinstein, *A Course in Game Theory*, The MIT Press, Cambridge Massachusetts, London, 1994

Chapters: 1 to 7

REFERENCE BOOKS

N.N. Vorobev, Game Theory, Springer Verlag Publications, 1977

CODE: MDSC-PR: Pattern Recognition 4 Credits

Course Objective:

- Introduce the concepts of feature extraction, Bayesian decision theory, nearest-neighbor rules, clustering, support vector machines, neural networks, classifier combination, and syntactic pattern recognition techniques such as stochastic context-free grammars.
- The course is part lecture and part seminar: students will present some course material to the class as well as complete and present a research paper.
- In addition, programming assignments will provide students with practical experience in constructing pattern recognition systems such as optical character recognizers (OCR).

Course Outcome: Student will be able to

- Explain and compare a variety of pattern classification, structural pattern recognition, and pattern classifier combination techniques.
- Summarize, analyze, and relate research in the pattern recognition area verbally and in writing.
- Apply performance evaluation methods for pattern recognition, and critique comparisons of techniques made in the research literature.
- Apply pattern recognition techniques to real-world problems such as document analysis and recognition.
- Implement simple pattern classifiers, classifier combinations, and structural pattern recognizers.

Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	Introduction	Introduction, Features, Feature Vectors, Classifiers,	4
		Supervised, Unsupervised and Semi-Supervised Learning.	
2	Classifiers based on	Introduction, Bayes Decision Theory, Discriminant	10
	Bayes Theory	Functions, Bayes Classification for Normal Distributions,	
		Estimation of Unknown Probability Distributions: ML	
		Parameter Estimation, MAP Estimation, Bayesian	
		Inference, Maximum Entropy Estimation, Mixture	
		Models, Non-Parametric Estimation, the Naïve-Bayes	
		Classifier, the Nearest Neighbor Rule, Bayesian Networks.	
3	Linear Classifiers	Introduction, Linear Discriminant Functions and	8
		Decisions, Hyper-planes, The Perceptron algorithm, Least	
		Square Methods, Mean Square Estimation Revisited,	
		Logistic Discrimination, Support Vector Machines for	
		Separable Classes, SVM for Non-Separable Classes, SVM	
		for Multiclass Case, &-SVM	
4	Nonlinear Classifiers	XOR Problem, Two Layer Perceptron, Three-Layer	10
		Perceptrons, Algorithms based on Exact Classification of	
		Training Set, The Back-Propagation Algorithm, Variation	
		of BP Theme, Choice of Cost Function, Choice of Network	

		Size, Generalized Linear Classifiers, Capacity of d-			
		dimensional space in linear Dichotomies, Polynomial			
		Classifiers, Radial Basis Function Networks, Universal			
		Approximators, Probabilistic Neural Networks, SVM-			
		Nonlinear Case, Beyond SVM Paradigm, Decision Trees,			
		Combining Classifiers, Boosting, Class Imbalance Problem			
5	Clustering	Introduction, Proximity Measures, Number of Possible	10		
		Clusterings, Categories of Clustering Algorithms,			
		Sequential Clustering Algorithms, Agglomerative			
		Algorithms, Divisive Algorithms, Hierarchical Algorithms			
		for Large Datasets., Choice of the Best Number of			
		Clusters, Hard Clustering Algorithms, Vector			
		Quantization. Algorithms based on Graph Theory,			
		Competitive Learning algorithms			
6	Bargaining Games	Bargaining and Game Theory, A Bargaining Game of	10		
		Alternating Offers, Sub game Perfect Equilibrium,			
		Variations and Extensions			
Key Te	ext:				
Sergios	Sergios Theodoridis and Knostantinos Koutroumbas, Pattern Recognition, Fourth Edition, Elsevier				
Publica	itions, 2009, Chapters: 1,	2, 3, 4, 11, 12.1-12.3, 13, 14.5, 15.1-15.3.			

CODE: MDSC- CG (T) : Cryptography Theory 3 Credits :: Lab 1 Credit

Course Objective:

- To introduce classical encryption techniques and concepts of modular arithmetic and number theory.
- To explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, and public key algorithms.

Course Outcome: Student will be able to

- Understand system security goals and concepts, classical encryption techniques and acquire fundamental knowledge on the concepts of modular arithmetic and number theory.
- Understand, compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication.

Unit No.	Unit Title	Unit Contents	No. of Periods
1	Introduction to	Cryptography and modern cryptography, Setting of private	6
	Classical	key encryption, Historical ciphers and their Cryptanalysis,	
	Cryptography	Principles of modern cryptography, Perfectly secret	
		encryption, One-Time Pad, Limitations of Perfect Secrecy	
2	Private-Key	Computational Security, Defining Computationally Secure	6
	Encryption	Encryption, Constructing Secure Encryption Schemes,	
		Stronger Security Notions, Constructing CPA-Secure	
		Encryption Schemes, Modes of Operation, Chosen-Ciphertext	
		Attacks	
3	Message	Message Integrity, Message Authentication Codes –	6
	Authentication	Definitions, Hash Functions – Definitions, Merkle–Damgard	
	Codes and Hash	Transform, Birthday Attacks on Hash Functions	
	Functions		
4	Number Theory	Preliminaries and Basic Group Theory, Factoring and RSA,	7
	and Key Exchange	Cryptographic Assumptions in Cyclic Groups, Key Exchange	
		and the Diffie–Hellman Protocol	
5	Public-Key	Public-Key Encryption – An Overview and Definitions,	8
	Encryption	Hybrid Encryption and KEM/DEM paradigm, RSA Encryption	
		– Plain RSA, Padded RSA and PKCS #1 v1.5	
6	Digital Signature	Digital Signatures – An Overview and Definitions, Hash-and-	6
	Schemes	Sign Paradigm, RSA Signatures – Plain RSA, Schnorr	
		Signature Scheme	

Key Text:

1. J. Katz and Y. Lindell, *Introduction to Modern Cryptography*, 2nd edition, CRC Press, 2015, Chapters & Sections: 1.1-1.4, 2.1-2.3, 3.1-3.6, 3.7.1, 4.1-4.3, 5.1-5.2, 5.4.1-5.4.2, 8.1.1-8.1.4, 8.2.1, 8.2.3-8.2.4, 8.3.1-8.3.3, 10.3, 11.1-11.3, 11.5.1-11.5.2, 12.1-12.3, 12.4.1, 12.5.1, 12.8. References:1. S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, July 2008.Available online: https://cseweb.ucsd.edu/~mihir/papers/gb.pdf.2. C. Paar and J. Pelzl, Understanding Cryptography, Springer, 2010.

DSC-CG (P): Practicals: Cryptography Lab-1 Credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

CODE: MDSC-PP (T):Parallel Processing Theory 3 Credits :: Lab 1 Credit

Course Objective:

Theoretical and practical survey of parallel processing, including a discussion of parallel architectures, parallel programming language, and parallel algorithms. Programming one or more parallel computers in a higher-level parallel language

Course Outcome: Students will be able to

- Compute speedup, efficiency, and scaled speedup of parallel computations, given appropriate data.
- Apply Amdahl's Law to predict the maximum speedup achievable from a parallel version of a sequential program, given its execution profile.
- Analyze the iso-efficiency of a parallel algorithm.
- Explain the relative advantages and disadvantages of mesh, hypercube, and butterfly networks with respect to diameter, bisection width, and number of edges/node

Unit	Unit Title	Unit Contents	No. of		
No.			Periods		
1	Introduction	Modern Parallel Computers - Types of Concurrency -	3		
		Programming.			
2	Parallel	Interconnection Network – Processor arrays –	5		
	Architecture	Multiprocessors – Multi Computers – Flynn's taxonomy			
3	Parallel Algorithm	Foster's Design Methodology – Example Problems.	4		
	Design				
4	Algorithms for	Sieve of Eratosthenes – Floyd's Algorithm.(To discuss all	4		
	Illustrations	the concepts introduced so far).			
5	Performance	Speed up and Efficiency – Amdahl's Law – Gustafson's	4		
	analysis	Barsis Law – Karp Flatt Metric – Isoefficiency Metric			
6	Matrix Vector	Monte Carlo Methods - Matrix Multiplication - Solving	14		
	Multiplication	linear System - finite Difference Methods - sorting			
		algorithm - combinatorial Search.			
7	Shared Memory	Open MP	5		
	Programming				
Key Te	Key Text: Michale J Quinn, Parallel Programming in C with MPI and OpenMP, Tata McGraw Hill 2004				
Reference Book: AnanthaGrama, Anshul Gupta, George Karypis, Vipin Kumar, Introduction to					
Parallel	Computing, Pearson ed	ducation LPE, 2 nd Edition, 2004.			

MDSC- PP (P): Practicals: Parallel Processing 1 Credit

This will be evaluated internally.

- 1. Message Passing programming Model MPI Point to Point & Collective Calls.
- 2. Document classification Problem
- 3. Matrix Vector & Matrix Matrix Multiplication
- 4. Parallel Quick Sort
- 5. Shared Memory Programming Open MP

CODE: MDSC- NLP (T): NATURAL LANGUAGE PROCESSING -

(3 Credit- 39 Periods)

Course Objective:

- To understand natural language processing and to learn how to apply basic algorithms in this field.
- To get acquainted with the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language data corpora.
- To conceive basics of knowledge representation, inference, and relations to the artificial intelligence.

Course Outcome:

The students will get acquainted with natural language processing and learn how to apply basic algorithms in this field. They will understand the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language data - corpora. They will also grasp basics of knowledge representation, inference, and relations to the artificial intelligence.

Unit	Unit Title	Unit Contents	No. of		
No.			Periods		
1	UNIT -1	Introduction To Languages And Grammars -	13		
		Transformational Grammars Of Natural			
		Language			
2	UNIT -2	Two-Level Representation - Transition	13		
		Networks - From Grammar To Acceptor			
3	UNIT-3	Two Level Processing Systems RTN's And	13		
		ATN's- Issues And Applications.			
Key T	Key Text: 1. Gilbert K. Krulee, Computer Processing of Natural Language, Prentice Hall 1991.				

MDSC-NLP (P): Practicals: Natural Language Processing Lab - 1 Credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally.

CODE: MDSC- IOT (T): Internet of Things Theory 3 Credits :: Lab 1 Credit

Course Objective:

Students explore the interconnection and integration of the physical world and the cyberspace design and develop IOT Devices.

Course Outcome: Students will be able to

- Understand the application areas of IOT
- Realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks
- Understand building blocks of Internet of Things and characteristics.
- Design and develop IOT Devices.

Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	Introduction	What is the Internet of Things? : History of IoT, About	4
		IoT, Overview and Motivations, Examples of	
		Applications, Internet of Things Definitions and	
		Frameworks : IoT Definitions, IoT Architecture, General	
		Observations, ITU -T Views, Working Definition, IoT	
		Frameworks, Basic Nodal Capabilities	
2	FUNDAMENTAL	Identification of IoT Objects and Services, Structural	4
	IoT	Aspects of the IoT, Environment Characteristics, Traffic	
	MECHANISMS	Characteristics, Scalability, Interoperability, Security and	
	AND KEY	Privacy, Open Architecture, Key IoT	
	TECHNOLOGIES	Technologies, Device Intelligence, Communication	
		Capabilities, Mobility Support, Device Power, Sensor	
		Technology, RFID Technology, Satellite Technology,	
3	RADIO	RFID: Introduction, Principle of RFID, Components of an	6
	FREQUENCY	RFID system, Issues EPCGlobal Architecture Framework:	
	IDENTIFICATIO	EPCIS & ONS, Design issues, Technological challenges,	
	N TECHNOLOGY	Security challenges, IP for IoT, Web of Things. Wireless	
		Sensor Networks:	
		History and context, WSN Architecture, the node,	
		Connecting nodes, Networking Nodes, Securing	
		Communication WSN specific IoT applications,	
		challenges: Security, QoS, Configuration, Various	
		integration approaches, Data link layer protocols, routing	
		protocols and infrastructure establishment.	
4	RESOURCE	Clustering, Software Agents, Clustering Principles in an	10
	MANAGEMENT	Internet of Things Architecture, Design	
	IN THE	Guidelines, and Software Agents for Object	
		Representation, Data Synchronization.	

	INTERNET OF	Identity portrayal, Identity management, various identity	
	THINGS	management models: Local, Network,	
		Federated and global web identity, user -centric identity	
		management, device centric identity management and	
		hybrid -identity management, Identity and trust.	
5	INTERNET OF	Vulnerabilities of IoT, Security requirements, Threat	6
	THINGS	analysis, Use cases and misuse cases, IoT security	
	PRIVACY,	tomography and layered attacker model, Identity	
	SECURITY AND	establishment, Access control, Message integrity, Non-	
	GOVERNANCE	repudiation and availability, Security model for IoT.	
6	BUSINESS	Business Models and Business Model Innovation, Value	9
	MODELS FOR	Creation in the Internet of Things , Business, Model	
	THE INTERNET	Scenarios for the Internet of Things. Internet of Things	
	OF THINGS	Application : Smart Metering Advanced Metering	
		Infrastructure, e-Health Body Area Networks, City	
		Automation, Automotive Applications, Home	
		Automation, Smart Cards,	
Key Te	exts:		

 Daniel Minoli, Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, ISBN: 978 -1-18-47347-4, Willy Publications, 2013

- 2. Bernd Scholz-Reiter, Florian ichahelles, *Architecting the Internet of Things*, ISBN 978-3-642-19156-5 e-ISBN 978-3-642-9157-2, Springer, 2011
- 3. Parikshit. Ahalle & Poonam N. Railkar, *Identity Management for Internet of Things*, River Publishers, 2015

Reference Books:

- 4. Hakima Chaouchi, *The Internet of Things Connecting Objects to the Web* Willy Publications, 2010
- 5. Olivier Hersent, David Boswarthick, Omar Elloumi, *The Internet of Things: Key Applications and Protocols*, 2nd Edition, Wiley Publications, 2012
- 6. Daniel Kellmereit, Daniel Obodovski, *The Silent Intelligence: The Internet of Things*, Publisher: Lightning Source Inc; 1st edition, 2014.
- 7. Fang Zhaho, Leonidas Guibas, *Wireless Sensor Network: An information processing approach*, Elsevier, 2004

CODE: MDSC-IOT (P) – Practicals: Internet of Things Lab – 1 Credit

LAB Assignments: This will be evaluated internally.

Internet of things: Overview, technology of the internet of things, enchanted objects, Design principles for connected devices, Privacy, Web thinking for connected devices Writing Code: building a program and deploying to a device, writing to Actuators, Blinking Led, Reading from Sensors, Light Switch, Voltage Reader, Device as HTTP Client, HTTP, Push Versus Pull. Pachube, Netduino, Sending HTTP Requests—the Simple Way, Sending HTTP Requests—the Efficient Way.

HTTP: Device as HTTP Server, Relaying Messages to and from the Netduino, Request Handlers, Web Html, Handling Sensor Requests, Handling Actuator Requests Going Parallel: Multithreading, Parallel Blinker, prototyping online components, using an API, from prototypes to reality, business models, ethics, privacy, disrupting control, crowdsourcing

	CODE: MDSC- DL: Deep Learning 4 Credits				
Course •	 Course Objective: To learn the basics of neural networks, convolutional networks, recurrent networks Understand the concepts such as dropout, batch normalization, types of hyper- parameter optimization, distributed and constrained computing variants; To understand applications in the area of audio processing and image captioning and vision. 				
Course • • •	architectures), and their typical applications.				
Unit No.	Unit Title	Unit Contents	No. of Periods		
1	Basics of Deep leaning- Deep learning architectures	Convolutional Neural Networks : Neurons in Human Vision-The Shortcomings of Feature Selection-Vanilla Deep Neural Networks Don't Scale-Filters and Feature Maps-Full Description of the Convolutional Layer-Max Pooling-Full Architectural Description of Convolution Networks-Closing the Loop on MNIST with Convolutional Networks-Image Preprocessing Pipelines Enable More Robust Models-Accelerating Training with Batch Normalization-Building a Convolutional Network for CIFAR-10-Visualizing Learning in Convolutional Networks Leveraging Convolutional Filters to Replicate Artistic Styles-Learning Convolutional Filters for Other Problem Domains – Training algorithms.	14		
2	Memory Augmented Neural Networks	Neural Turing Machines-Attention-Based Memory Access-NTM Memory Addressing Mechanisms- Differentiable Neural Computers-Interference-Free Writing in DNCs-DNC Memory Reuse-Temporal	12		

		Linking of DNC Writes-Understanding the DNC Read Head-The DNC Controller Network Visualizing the DNC in Action-Implementing the DNC in Tensor Flow- Teaching a DNC to Read and Comprehend.	
3	Deep Reinforcemen t Learning	Deep Reinforcement Learning Masters Atari Games What Is Reinforcement Learning?-Markov Decision Processes (MDP)-Explore Versus Exploit-Policy versus Value Learning-Pole-Cart with Policy Gradients-Q- Learning and DeepQ - Networks-Improving and Moving Beyond DQN.	12
4	Implementing Neural Networks in TensorFlow	What Is Tensor Flow?-How Does TensorFlow Compare to Alternatives?-Installing TensorFlow-Creating and Manipulating TensorFlow Variables-TensorFlow Operations-Placeholder Tensors-Sessions in TensorFlow- Navigating Variable Scopes and Sharing Variables- Managing Models over the CPU and GPU-Specifying the Logistic Regression Model in TensorFlow-Logging and Training the Logistic Regression Model-Leveraging TensorBoard to isualizeComputationGraphsandLearning- BuildingaMultilayerModelforMNISTinTensorFlow. Applications: Deep learning for computer vision, Deep Learning Models for Health care Applications.	14

Key Texts:

Nikhil Buduma, Nicholas Locascio, *Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms*, O'Reilly Media, 2017. 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, *Deep Learning (Adaptive Computation and Machine Learning series, MIT Press, 2017.*

References:

■ Ian Goodfellow, Yoshua Bengio, Aaron Courville. *Deep Learning*, The MIT Press, 2016, 800 pp, ISBN: 0262035618

■ Duda, R.O., Hart, P.E., and Stork, D.G. *Pattern Classification*. Wiley-Interscience. 2nd Edition. 2001.

■ Theodoridis, S. and Koutroumbas, K. *Pattern Recognition*, 4th Edition, Academic Press, 2008.

■ Russell, S. and Norvig, N. *Artificial Intelligence: A Modern approach,* Prentice Hall Series in Artificial Intelligence. 2003.

Bishop, C. M. Neural Networks for Pattern Recognition,. Oxford University Press. 1995.

■ Hastie, T., Tibshirani, R. and Friedman, J. *The Elements of Statistical Learning*, Springer, 2001.

• Koller, D. and Friedman, N. *Probabilistic Graphical Models*, MIT Press. 2009.

CODE: MDSC-IP (T) Image Processing Theory 3 Credits : Lab 1 Credit

Course Objective:

- This course is an introduction to the fundamental concepts and techniques in basic digital image processing and their applications to solve real life problems.
- The topics covered include Digital Image Fundamentals, Image Transforms, Image Enhancement, Restoration and Compression, Morphological Image Processing, Nonlinear Image Processing, and Image Analysis.

Course Outcome: Student will be able to

- be familiar with basic image processing techniques for solving real problems.
- have sufficient expertise in both the theory of two-dimensional signal processing and its wide range of applications, for example, image restoration, image compression, and image analysis.

Unit	Unit Title	Unit Contents	No. of
No.			Periods
1	Introduction	Fundamental Steps in Digital Image Processing -	6
		Components of an Image Processing System	
2	Image processing	Elements of visual perception – Light and	6
	Fundamentals	electromagnetic spectrum – image sensing and	
		acquisition - Image Sampling and Quantization- Basic	
		Relationships between Pixels - An introduction to	
		mathematical tools used in digital image processing	
3	Intensity	Some basic intensity transformation functions -	6
	Transformations and	Histogram Processing – Fundamentals of spatial	
	Spatial Filtering	filtering- Smoothing and sharpening spatial filters -	
		combining spatial enhancement methods	
4	Filtering in the	Sampling and the Fourier transform of sampled	6
	frequency domain	functions – basics of filtering in the frequency domain –	
		image smoothing and sharpening using frequency	
		domain filters – selective filtering	
5	Image Restoration	Model for image degradation and restoration process –	9
	and Reconstruction	noise models – restoration in the presence of noise only	
		spatial filtering – periodic noise reduction by frequency	
		domain filtering – linear position invariant degradations	
		– estimating the degradation function – inverse filtering	
6	Image Segmentation	Point, line and edge detection – thresholding – region	6
		based segmentation	
Key To	ext:	•	-
Rafael.	. C. Gonzalez & Richard	E. Woods, Digital Image Processing – 3 rd Edition, Pearson Edu	acation,
2002. [Chapters 1, 2, 3.1 to 3.7,	4.1 to 4.10, 5.1 to 5.7, 10.1 to 10.4]	

2. Relevant research papers selected for the course by the instructor

References:

1. Maria Petrou and Costas Petrou, Image Processing – The Fundamentals, Second Edition, John Wiley

and Sons, 2010.

2. Anil. K. Jain, *Fundamentals of Digital Image Processing*, Eastern Economy Edition, Prentice Hall of India 1997.

MDSC-IP (P): Practicals: Image Processing Lab - 1 credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally

	CC	ODE: MDSC-CV Computer Vision	
		Theory 3 Credits : Lab 1 Credit	
Unit No.	Unit Title	Unit Contents	No. of Periods
Course	Objective:		
•	To develop an appr recognition systems	ts the fundamentals of image formation; eciation for various issues in the design of computer vision a s; and to provide the student with programming experie uter vision and object recognition applications.	
Course	Outcome: Student v	vill be able to	
•	vision Describe known prin Describe basic meth detection and detect	ots, terminology, theories, models and methods in the field of nciples of human visual system hods of computer vision related to multi-scale representat ion of other primitives, stereo, motion and object recognition	-
1	Review of pre-	a computer vision system for a specific problem Motivation, Image Representation and Image Analysis	6
1	requisites -1	Tasks, Image Representations, a Few Concepts - Image	0
	requisites i	Digitization, Sampling, Quantization, Digital Image	
		Properties, Metric and Topological Properties of Digital	
		Images, Histograms, Entropy, Image Quality, Noise in	
		Images, Color Images, Color Spaces, Cameras: An	
		Overview	
2	Review of pre-	The Image, its Mathematical and Physical Background	6
	requisites-II	Overview / Linearity / The Dirac Distribution and	
		Convolution / Linear Integral Transforms / Images as	
		Linear Systems / Introduction to Linear Integral Transforms	
		/ 1D Fourier Transform / 2D Fourier Transform / Sampling	
		and the Shannon Constraint / Discrete Cosine Transform /	
		Wavelet Transform / Eigen-Analysis / Singular Value	
		Decomposition / Principle Component Analysis / Other	
		Orthogonal Image Transforms / Images as Stochastic	
		Processes / Images as Radiometric Measurements / Image	
		Capture and Geometric Optics / Lens Aberrations and	
		Radial Distortion / Image Capture from a Radiometric	
		Point of View / Surface Reflectance /	
3	Data Structures	Levels of Image Data Representation / Traditional Image	6
	for Image	Data Structures / Matrices / Chains / Topological Data	
	Analysis	Structures / Relational Structures / Hierarchical Data	

		Churchennes / Demonsi de / Oue dunces / Out D 11	
		Structures / Pyramids / Quadtrees / Other Pyramidal	
		Structures	
4	Segmentation	Watershed Segmentation / Region Growing Post-	6
		Processing / Matching / Matching Criteria / Control	
		Strategies of Matching / Evaluation Issues in Segmentation	
		/ Supervised Evaluation / Unsupervised Evaluation/Mean	
		Shift Segmentation / Active Contour Models - Snakes /	
		Traditional Snakes and Balloons / Extensions / Gradient	
		Vector Flow Snakes / Geometric Deformable Models -	
		Level Sets and Geodesic Active Contours / Towards 3D	
		Graph-Based Image Segmentation / Simultaneous	
		Detection of Border Pairs / Sub-optimal Surface Detection /	
		Graph Cut Segmentation / Optimal Single and Multiple	
		Surface Segmentation	
5	Shape	Region Identification / Contour-Based Shape	5
	Representation	Representation and Description / Chain Codes / Simple	
	and Description	Geometric Border Representation / Fourier Transforms of	
	1	Boundaries / Boundary Description using Segment	
		Sequences / B-Spline Representation / Other Contour-	
		Based Shape Description Approaches / Shape Invariants /	
		Region-Based Shape Representation and Description /	
		Simple Scalar Region Descriptors / Moments / Convex	
		Hull / Graph Representation Based on Region Skeleton /	
		Region Decomposition / Region Neighborhood Graphs /	
		Shape Classes	
6	Object	Knowledge Representation / Statistical Pattern	5
	Recognition	Recognition / Classification Principles / Classifier Setting /	
		Classifier Learning / Support Vector Machines / Cluster	
		Analysis / Neural Nets / Feed-Forward Networks /	
		Unsupervised Learning / Hopefield Neural Nets /	
		Syntactic Pattern Recognition / Grammars and Languages	
		/ Syntactic Analysis, Syntactic Classifier / Syntactic	
		Classifier Learning, Grammar Inference / Recognition as	
		Graph Matching / Isomorphism of Graphs and Sub-	
		Graphs / Similarity of Graphs / Optimization Techniques	
		in Recognition.	
7	Image	Image Understanding Control Strategies / Parallel and	5
/	Understanding	Serial Processing Control / Hierarchical Control / Bottom-	5
		-	
		Up Control / Model-Based Control / Combined Control /	
		Non-Hierarchical Control / RANSAC: Fitting via Random	

Sample Consensus / Point Distribution Models / Active	
Appearance Models / Pattern Recognition Methods in	
Image Understanding / Classification-Based Segmentation	
/ Contextual Image Classification / Boosted Cascade of	
Classifiers for Rapid Object Detection / Scene Labeling and	
Constraint Propagation / Discrete Relaxation / Probabilistic	
Relaxation / Searching Interpretation Trees / Semantic	
Image Segmentation and Understanding / Semantic	
Region Growing	

Key Text:

1) Milan Sonka, Vaclav Hlavac, Roger Boyle, *Image Processing, Analysis, and Machine Vision,* 3rd Edition, Thomson Brooks/Cole Pub, 2000.

References:

- 1) David A. Forsyth and Jean Ponce, *Computer Vision: A Modern Approach*, Prentice Hall of India, 2006,
- 2) Emanuele Trucco, Alessandro Verri, *Introductory Techniques for 3-D Computer Vision*, Prentice Hall, 1998.
- 3) Robert M. Haralick and Linda G. Shapiro, *Computer and Robot Vision*, Addison Wesley.
- 4) Mubarak Shah, *Fundamentals of Computer Vision*, Free E-Book available at Authors site: <u>http://vision.eecs.ucf.edu/faculty/shah.html</u>

MDSC-CV (P) - Practicals: Computer Vision Lab – 1 credit

Algorithms/Exercises from different units in the syllabus will be implemented in Lab. This will be evaluated internally

	CODE: MDSC-RO Robotics 4 Credits				
Unit No.	Unit Title	Unit Contents	No. of Periods		
Cours	e Objective:				
•	,	damental concepts in robotics.			
•		ory understanding of robotics.			
Cours	e Outcome: Students				
٠		cs in robotics with emphasis on basics of manipulators,			
•	coordinate transform	ation and kinematics,			
•	know trajectory plan	ning,			
٠	know control technic	lues,			
•	know sensors and de	evices,			
•	learn robot application	ons and economics analysis.			
1	Introduction	Introduction brief history, types, classification and usage, Science and Technology of robots, Some useful websites, textbooks and research journals.	4		
2	Elements of robots joints, links, actuators, and sensors	Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions,	4		
		Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.			
3	Kinematics of serial robots	Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.	6		
4	Kinematics of parallel robots	Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-form and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.	8		

5	Velocity and statics	Linear and angular velocity of links, Velocity	6
	of robot	propagation, Manipulator Jacobians for serial and	0
	manipulators	parallel manipulators, Velocity ellipse and ellipsoids,	
	manpalators	Singularity analysis for serial and parallel	
		manipulators, Loss and gain of degree of freedom,	
		Statics of serial and parallel manipulators, Statics and	
		force transformation matrix of a Gough-Stewart	
		platform, Singularity analysis and statics.	
6	Dynamics of serial	Mass and inertia of links, Lagrangian formulation for	6
Ū	5	equations of motion for serial and parallel	0
	and parallel robots	manipulators, Generation of symbolic equations of	
		motion using a	
		computer, Simulation (direct and inverse) of dynamic	
		equations of motion, Examples of a planar 2R and four-	
		bar mechanism, Recursive dynamics, Commercially	
		available	
		multi-body simulation software (ADAMS) and	
		Computer algebra software Maple.	
7	Motion planning	Joint and Cartesian space trajectory planning and	5
,	and control	generation, Classical control concepts using the	
	and control	example of control of a single link, Independent joint	
		PID control,	
		Control of a multi-link manipulator, Non-linear model	
		based control schemes,	
		Simulation and experimental case studies on serial and	
		parallel manipulators, Control of constrained	
		manipulators, Cartesian control, Force control and	
		hybrid	
		Position/ force control, Advanced topics in non-linear	
		control of manipulators.	
8	Modeling and	Models of flexible links and joints, Kinematic modeling	4
	control of flexible	of multi-link flexible robots, Dynamics and control of	
	robots	flexible link manipulators, Numerical simulations	
	100015	results, Experiments with a planar two-link flexible	
		manipulator	
9	Modeling and	Introduction and some well-known wheeled mobile	4
	analysis of	robots (WMR), two and three-wheeled WMR on flat	
	wheeled mobile	surfaces, Slip and its modeling, WMR on uneven	
	robots	terrain, Design of slip-free motion on uneven terrain,	
		Kinematics, dynamics and static stability of a three-	
		wheeled WMR's on uneven terrain, Simulations using	
		Matlab and ADAMS.	
10	Advanced topics in	Introduction to chaos, Non-linear dynamics and chaos	5
	robotics	in robot equations, Simulations of planar 2 DOF	
		manipulators, Analytical criterion for unforced motion.	

Gough-Stewart platform and its singularities, use of
near singularity for fine motion for sensing, design of
Gough-Stewart platform based sensors.
Over-constrained mechanisms and deployable
structures, Algorithm to obtain redundant links and
joints, Kinematics and statics of deployable structures
with pantographs or scissor-like elements (SLE's).

Key Text:

Robotics: Fundamental Concepts and Analysis Oxford University Press, Second reprint, May 2008.

CODE: MDSC – ARM Advanced Regression Methods 4 credits			
Unit	Торіс	Details	Hours
Regress the rela observa exercise popula	Objective: sion methods is one ationships between ations. The foundat es. Regression mod rity in finance is ve	e of the most powerful methods in statistics for deter variables and using these relationships to forecast fu ion of regression analysis is very helpful for modellin els are used to predict and forecast future outcomes. ry high; it is also very popular in other disciplines lik	ture ng Its
Course	Outcome: Develop	anagement and engineering. o the skill set to understanding of the non-linear regression mode	l and its
1	Non Linear Regression	Origin, Non Linear Least squares, Transformation to Linear Model, Parameter Estimation, Statistical Inference	10
2	Polynomial Regression	Models in one, two or more variables, Non parametric Regression, Orthogonal Polynomials	10
3	Generalized Linear Models	Logistic Regression, Poisson Regression, Generalized Linear Model	10
4	Regression Analysis of Time Series Data	Models, Detecting Auto Correlation, Durbin-Watson test, Estimating Parameters	10
5	Advanced Topics	Robust Regression, Effect of Measurement Errors, Inverse Estimation, Bootstrapping, Classification and Regression Trees, Neural Networks	12
Regressi		zabeth A. Peck and G. Geoffrey Vining, Introduction to Lir n, Wiley, 2012	iear
Referen Normar		Smith, <i>Applied Regression Analysis</i> - 3 rd Edition, Wiley, 1998	3

[MDSC-ACA] – Advanced Computer Architecture (4 Credits) (52 Periods).

Course Objective:

- To learn the advanced concepts related to computer architecture, like branch prediction, vector processing etc.
- To have a sharp focus on emerging computing platforms.
- To emphasize on cost-performance-energy trade-offs and good engineering design.

Course Outcome: Student will be able to

- 1. Understand the principles of Instruction Set Architecture.
- 2. Understand the concept of Instruction Level Parallelism, branch prediction algorithms, memory hierarchy.
- 3. Analyze different emerging multicore and multiprocessors systems.

Unit No.	Unit Title	Topics	No. of Periods
1	Instruction Set Architecture	Instruction Set Architectures, Microcode, Pipelining Review Cache Review	9
2	Instruction Level Parallelism	Instruction level parallelism – hardware and software techniques (e.g., dynamic scheduling, superscalar, static and dynamic branch prediction, VLIW, loop unrolling). Exceptions.	14
3	Memory Concepts	Branch Prediction, Memory hierarchy – advanced concepts in caches (e.g., prefetching, lockup-free caches, and multi- level caches), main memory, and virtual memory. Memory Protection.	17
4	Multicore and Multiprocessors	Vector Processors and GPUs Multiprocessors / multicore – overview of different models, cache coherence with shared-memory systems/multicore (snoopy and directory solutions), synchronization.	12

John L. Hennessy and David A. Patterson, *Computer Architecture: A Quantitative Approach* (5th Edition), 2012, ISBN: 978-0123838728

Chapters: 1-5; Appendix A, B-1-B67, C.

Reference Texts:

1. D. M. Harris and S. L. Harris, Morgan Kaufmann, *Digital Design and Computer Architecture*, 2nd edition, 2012.

2. John P. Shen and Mikko H. Lipasti, *Modern Processor Design: Fundamentals of Superscalar Processors* (1st Edition), ISBN: 0070570647, Princeton University Library Own, 2004

[MDSC - TDA] – Topological Data Analysis [4 credits]

Course Objective:

To understand complex datasets, where complexity arises from not only the massiveness of the data, but also from the richness of the features. The objective of this subject is to enable the students to become familiar with the new methods in Topological Data Analysis (TDA), from theory, algorithm and application perspectives.

Course Outcome: Student will be able to

- infer high dimensional structure from low dimensional representations and convert data sets into topological objects.
- pursue new research directions in the field of TDA and integrate advanced TDA techniques with other areas of data science such as data mining, machine learning, computer graphics, and data visualization.

Unit	Title	Contents	No. of Periods
1	Introduction	Graphs, connected components, topological space, manifold, point clouds.	12
2	Homology	Simplicial Complexes, Convex Set Systems, Delaunay Complexes and Alpha Complexes, Homology Groups, Relative Homology	12
3	Persistent homology	Persistent Homology, Efficient Implementations, Extended Persistence.	12
4	Persistence topology of data	Barcodes, Example of Natural image, Persistence Landscapes: Norms, Convergence, Confidence Intervals, and Stability of Persistence Landscapes, Statistical Inference using Landscapes	16

Key Text(s):

- 1. Edelsbrunner, Herbert. *Computational topology: an introduction,* AMS, 2010. Chapters: I, III, IV, VII.
- 2. Robert Ghrist. *Barcodes: The persistent topology of data*, Bulletin of the American Mathematical Society (AMS), 2008, 45(1): 61–75.
- **3**. Peter Bubenik, *Statistical Topological Data Analysis using Persistence Landscapes*, J. of Machine Learning Research 16 (2015), 77-102.

Reference(s):Frédéric Chazal and Bertrand Michel, *An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists,* 2017.

1. G. Carlsson, Topology and Data, *Bulletin of the American Mathematical Society* Volume 46(2), 2009, 255 - 308.

[MDSC-LSP] – Linux System Programming (4 Credits) (52 Periods).

Course Objective:

- To learn the different set of system calls for the Linux Operating System
- To understand how the Linux OS manages files, processes and memory
- To implement inter-process communication using different mechanisms

Course Outcome: Student will be able to

Assimilate the internal abstractions of any Operating System

Utilize the insights gained from how these abstractions were implemented and apply them in other areas of work

Unit No.	Unit Title	Topics	No. of Periods
1	Introduction	System Calls, Library Functions, Standard C Library, Error handling	6
2	File Management	Overview, File Operations (open, read, write, lseek, close), Atomicity, File Descriptors - relation to open files and duplication, File I/O variations (pread, pwrite, readv, writev), File truncation	10
3	Process Management	Process concept, Process Memory Layout, Virtual Memory Management, Stack Frames, Command line arguments, Environment Variables, Process - Creation, Termination, Execution and Monitoring	12
4	Memory Management	Heap and Stack Memory allocation, Memory Mapping - Creation, Unmapping, File mapping, Synchronization, Anonymous Mapping	12
5	Inter-Process Communication	Signals, Pipes, FIFO, POSIX Semaphores - Named Semaphore and Semaphore Operations, POSIX Shared Memory - Creation, Usage & Removal	12

Key Text: Michael Kerrisk, *The Linux Programming Interface*, No Starch Press, 2010 Chapters: 3 (3.1 - 3.4), 4 (4.1 - 4.7), 5 (5.1 - 5.8), 6 (6.1 - 6.7), 7, 20, 24, 25, 26, 27, 44 (44.1 - 44.4, 44.6 - 44.8), 49 (49.1 - 49.5, 49.7), 53 (53.1 - 53.3), 54 (54.1 - 54.4)

Reference Texts:

Robert Love, Linux System Programming, 2nd Edition, O'Reilly, 2013

[MDSC-CGR] – Computer Graphics (4 Credits) (52 Periods)

Course Objective:

- To learn the concepts involved in creating Computer Graphics
- To appreciate the mathematics behind Computer Graphics

Course Outcome: Student will be able to

- Implement algorithms to create graphical images
- Understand the internals of a graphics system

Unit No.	Unit Title	Topics	No. of Periods
1	Math Review	Sets, Quadratic Equations, Trigonometry, Vectors, Curves & Surfaces, Linear Interpolation, Triangles, Matrices, Determinants, Eigenvalues, Matrix diagonalization	6
2	Introduction to Graphics	Applications, API's, Graphics Pipeline, Numerical issues, Raster devices, Pixels, RGB color, Alpha composting	4
3	Ray Tracing	Basic algorithm, Perspective, Computing viewing rays, Ray-Object intersection, Shading, Shadows, Ideal Specular Reflection, Transparency, Refraction, Instancing, Solid Geometry, Distribution ray tracing	10
4	Transformation	2D & 3D Linear transformations, Translation, Affine transformations, Inverses, Coordinate Transformations, Viewing Transformations, Projective Transformations, Perspective projection, Field-of-view	10
5	Graphics Pipeline	Rasterization, Operations before and after Rasterization, Simple Antialiasing, Culling primitives	6
6	Data Structures for Graphics	Triangle Meshes, Scene Graphs, Spatial Data Structures, BSP Trees, Tiling Multidimensional arrays	8
7	Curves	Curve Properties, Polynomial pieces, Cubics, Approximating curves	8

Key Text:

Steve Marschner & Peter Shirley, Fundamentals of Computer Graphics, 4th Edition, CRC Press, 2015

Chapters: 1 - 8, 12, 13, 15.

Reference Texts:

Sumanta Guha, *Computer Graphics through OpenGL – From Theory to Experiments*, 2nd Edition, CRC Press, 2014
